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Abstract—This article presents a detailed analysis and comparative
performance evaluation of model reference adaptive control systems.
In contrast to classical control theory, adaptive control methods allow
to deal with time-variant processes. Inspired by the works [1] and
[2], two methods based on the MIT rule and Lyapunov rule are
applied to a linear first order system. The system is simulated and
it is investigated how changes to the adaptation gain affect the
system performance. Furthermore, variations in the reference model
parameters, that is changing the desired closed-loop behaviour are
examinded.

Keywords—Adaptive control systems, Adaptation gain, MIT rule,
Lyapunov rule, Model reference adaptive control.

I. INTRODUCTION

AADAPTIVE Control techniques allow to control sys-
tems where certain system parameters are not known or

change over time, for example in aircrafts [3] or for control
of digital servo motors [4]. This article discusses first order
systems of the class

Y (s) = G (s)U (s) =
b

s+ a
U (s) . (1)

It is assumed that both the system gain b as well as the
time constant a are unknown or time variant. Despite these
limitations a controller is to be found which will achieve
desired closed-loop dynamics.

One particular way of handling this problem is the tech-
nique of “Model Reference Adaptive Control” (MRAC). This
involves the definition of a reference process model whose
dynamics in response to a reference input should be followed
by the plant process. For the plant process with unknown
parameters, a specific control law alters the reference input
signal in order for the plant’s output signal to match the one of
the reference model. This control law features time dependent
controller parameters θ which reflect the algorithm’s adap-
tation to the given plant system. The adaptation or learning
component is incorporated by a time differential equation, the
update law.

The reference model defines the desired system dynamics
and

Ym (s) = Gm (s)R (s) =
bm

s+ am
R (s) (2)

produces a model output ym. From the plant process

Yp (s) = Gp (s)U (s) =
b

s+ a
U (s) (3)
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Fig. 1. Block diagram of a first order model reference adaptive control
system.

yp results. Taking the difference of these two signals yields
the tracking error e.

The process dynamics

ẏp + ayp = bu (4)

should follow the reference dynamics

ẏm + amym = bmr . (5)

Chosing the control law

u = rθ1 − ypθ2 . (6)

and inserting into eq. (4) yields

ẏp + (a+ bθ2) yp = bθ1r . (7)

The system structure using this control law is illustrated in the
block diagram in fig. 1.

Indeed, if θ1, θ2 were to be found as

θ1 =
bm
b

(8)

and
θ2 =

am − a

b
(9)

then eq. (7) would be identical to the reference dynamics in
eq. (5).

However, as the true values a and b are unknown, adaptation
mechanisms for θ1, θ2 which are solely based on measurable
quantities have to be found. Two different update laws will be
derived and experimentally evaluated in the following sections.

Similar work has been presented by the authors of [1] and
[2]. This article enhances their approach with further exper-
iments which analyse the effect of changes in the reference
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model parameters. These experiments are conducted using the
MIT rule and Lyapunov rule and comparing the two methods.

The remainder of this article is organised as follows: First,
the mathematical foundations of both update laws are outlined.
Subsequently, experiments on the effect of adaptation gain are
performed using the two algorithms. This includes analysis
of the time response, output error and parameter estimation.
Then, the reference model parameters am and bm are varied
and the resulting behaviour is analysed. Finally, a conclusion
summarizes the results.

II. MIT RULE

Firstly, a cost function is defined:

J =
1

2
e2. (10)

The main idea is to change θ along the “steepest descent” of
this cost function. Therefore, the time derivative is proportional
to the negative gradient with an adaptation gain α:

d

dt
θ = −α

d

dθ
J (11)

= −αe
d

dθ
e (θ) . (12)

In a second step, the sensitivity derivative d
dθ e (θ) is cal-

culated. Inserting the control law defined in eq. (6) into the
plant process dynamics and using s (·) := d

dt (·) as differential
operator yields:

yp =
bθ1

s+ a+ bθ2
r . (13)

It follows that the sensitivity derivatives d
dθ e (θ) are given as:

d

dθ1
e =

d

dθ1
(yp − ym) (14)

=
d

dθ1

(
bθ1

s+ a+ bθ2
r − ym

)
(15)

=
b

s+ a+ bθ2
r . (16)

And similarly:

d

dθ2
e =

d

dθ2
(yp − ym) (17)

=
d

dθ2

(
bθ1

s+ a+ bθ2
r − ym

)
(18)

= − b2θ1

(s+ a+ bθ2)
2 r (19)

= − b

s+ a+ bθ2
yp . (20)

However, eq. (16) and (20) still contain the unknown true
parameters a and b. Therefore, an approximation has to be
made for these terms. Perfect model following is achieved by
chosing [5]

θ1b = bm (21)

a+ bθ2 = am (22)

as it has already been indicated in the introduction.

Inserting these approximations into the sensitivity deriva-
tives yields

d

dθ1
e =

b

am

am
s+ am

r (23)

and
d

dθ2
e = − b

am

am
s+ am

yp . (24)

Finally, inserting these expressions into the the approach (12)
and merging factors into a single adaptation gain γ = α b

am
as

in [6] gives the update laws for θ1 and θ2:

d

dt
θ1 = −γe

am
s+ am

r (25)

d

dt
θ2 = γe

am
s+ am

yp . (26)

III. LYAPUNOV RULE

In order to derive an update law using Lyapunov theory, the
following Lyapunov function is defined [5], [6]:

V =
1

2
γe2 +

1

2b
(bθ1 − bm)

2
+

1

2b
(bθ2 + a− am)

2
. (27)

The time derivative of V can be found as

V̇ = γeė+ θ̇1 (bθ1 − bm) + θ̇2 (bθ2 + a− am) (28)

and its negative definiteness would guarantee that the tracking
error converges to zero along the system’s trajectories.

Inserting the dynamic equations of plant process (4) and
reference model (5) yields

V̇ = γe (ẏp − ẏm) + θ̇1 (bθ1 − bm) + θ̇2 (bθ2 + a− am)

= −γame2 +
(
γer + θ̇1

)
(bθ1 − bm)+(

θ̇2 − γeyp

)
(bθ2 + a− am) . (29)

The second line gives the following condition for negative
definiteness and thus the update laws:

d

dt
θ1 = −γer . (30)

d

dt
θ2 = γeyp . (31)

Note that this result is similar to the MIT rule in (25) and
(26). The only difference is that the MIT rule comprises an
additional filter operation with the reference model dynamics.

IV. EXPERIMENTAL PERFORMANCE EVALUATION

This section details an experimental performance evaluation
of the adaptive controller. It is investigated how different
adaptation gain values affect the system behaviour, both for
the MIT rule and the Lyapunov adaptation strategy. Secondly,
changes in the desired system response as defined by the
reference model’s parameters am, bm are investigated.

Analysing the adaptive controllers is performed using a
square wave signal with a time period of 20 s and unit
amplitude. This can be interpreted as a repeated step response
with each step lasting for a duration of 10 s. While it is
common to use a single step function to examine ordinary
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Fig. 2. MIT rule: Time response for varying adaptation gain values γ.

TABLE I
MIT RULE: SETTLING TIME AND OVERSHOOT OF FIRST STEP INPUT FOR

VARYING ADAPTATION GAINS (APPROXIMATIONS FROM FIG. 2).

overshoot
(1. step)

peak time
(1. step)

5% settling time
(1. step)

ym
(reference)

- - 1.48 s

γ = 1.0 10.7% 5.79 s 7.04 s
γ = 5.0 26.2% 2.55 s 4.52 s
γ = 10 27.5% 1.89 s 4.22 s

closed-loop behaviour, the nature of adaptive systems makes
it convenient to employ square wave signals and observe how
the controller adapts over time.

In all cases, the true plant parameters were set to a = 1.0
and b = 0.5.

A. Influence of adaptation gain using MIT rule

At first, the adaptation gain γ is varied and the resulting in-
fluence on the system’s time response is analysed. The results
of an experiment with gain values 1.0, 5.0 and 10 are shown
in fig. 2. Moreover, table I gives the approximate overshoot
and 5% settling time as observed in these simulations.

The following observations can be made from these results:
• Increasing the gain value reduces the settling time. Thus

it takes less time for the plant’s output signal to approach
the desired reference model’s response.

• At the same time, oscillations and overshoot occur which
are not present in the reference model’s output (first order
system). Increasing the gain value increases the frequency
of these oscillations and also results in higher overshoot.

The tracking error between the reference system and the
process over time is displayed in fig. 3. As the time responses
already indicated, higher gain values result in shorter settling
time for the error signal. This comes at the expense of higher
overshoot and may cause undesired behaviour that is the
adaptation may not converge. Analysing the gain margins for
adaptive controllers has been subject of research, for example
[7].
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Fig. 3. MIT rule: Tracking error for varying adaptation gain values γ.
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Fig. 4. MIT rule: Parameter estimation error for θ1 (left) and θ2 (right) for
varying adaptation gain values γ.

It is then investigated how the parameter estimates θ1 and
θ2 relate to the ideal values θ1 = bm

b and θ2 = am−a
b . It can be

seen from fig. 4 that the estimation error decreases over time
while the controller “adapts” to the system. Although higher
gain values may reduce the time needed for the parameter
estimate to converge to the true value, this may also cause
overshoot or even no convergence.1

In conclusion, it depends on the specific application’s re-
quirements whether a smaller overshoot or shorter settling
times are favoured. In any case, the possibility of unwanted
instability when increasing γ needs to be considered.

B. Influence of adaptation gain using Lyapunov rule

As in the previous section, adaptation gain γ is varied firstly
and the resulting influence on the system’s time response is
examined. Conducting the same experiment as in previous
section with gain values 1.0, 5.0 and 10 gives the results
which are visualised in fig. 5. Furthermore, table II states the
approximate overshoot and 5% settling time.

The tracking error between the reference system and the
process over time is displayed in fig. 6. Similar to the the
MIT rule results higher gain values result in shorter settling
time for the error signal. But in contrast to fig. 3 no excessive
overshoot can be observed when setting γ = 50.

Secondly, the parameter estimation error for θ1 and θ2 is
recorded and shown in fig. 7. As with the results obtained

1Setting γ = 50 results in no convergence at all, in order to ensure
readability of the plots, these graphs are is not depicted here.
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Fig. 5. Lyapunov rule: Time response for varying adaptation gain values γ.

TABLE II
LYAPUNOV RULE: SETTLING TIME AND OVERSHOOT OF FIRST STEP INPUT

FOR VARYING ADAPTATION GAINS (APPROXIMATIONS FROM FIG. 5).

overshoot
(1. step)

peak time
(1. step)

5% settling time
(1. step)

ym
(reference)

- - 1.48 s

γ = 1.0 13.5% 5.32 s 6.67 s
γ = 5.0 28.8% 2.21 s 5.30 s
γ = 10 27.0% 1.61 s 3.90 s

using the MIT rule, the controller eventually adapts to the
true values and the estimation error converges to zero. The
most significant difference in these results is that no instability
can be observed. Even when setting γ = 100, convergence is
maintained though with increased overshoot. Using the MIT
rule on the other hand yields unstable behaviour for these high
gain values.

C. Influence of changing reference model parameters

Lastly, the influence of changing the reference model’s
parameters am and bm is examined. As before, the plant

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time [s]

ou
tp

ut
 e

rr
or

Error between process and reference model for different gain values γ (Lyapunov rule)

γ=1.0

γ=5.0

γ=10

γ=50

Fig. 6. Lyapunov rule: Tracking error for varying adaptation gain values γ.
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Fig. 7. Lyapunov rule: Parameter estimation error for θ1 (left) and θ2 (right)
for varying adaptation gain values γ.
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Fig. 8. Time response for am = 2.0.

process parameters are set to a = 1.0 and b = 0.5. The
adaptation gain is now chosen as γ = 1.0.

The first parameter am is the time constant of the process
and higher values result in the reference system’s step response
approaching the end value faster. Changing the reference
model is equivalent to requesting a different time response for
the plant process. The objective of this experiment is therefore
to investigate whether the adaptive controller will successfully
speed up the plant’s response as well.

Fig. 8 shows the time responses of plant process yp and
reference model ym for the default value am = 2.0. Only a
slight difference between MIT rule and Lyapunov rule can be
noticed with the MIT rule showing less overshoot.

Increasing the time constant to am = 10 results in the
expected shorter rise time for ym as seen in fig. 9. For both
update laws the plot of yp shows a reduced rise time as well,
but significant overshoot prevents it from reaching the desired
behaviour of shorter settling time. Therefore, the adaptation
mechanism itself is not fast enough for adapting to very small
time constant. Almost no difference can be seen between MIT
and Lyapunov adaptation strategies.

On the other hand, reducing the parameter value to am =
0.5 and am = 0.3 and thus increasing the time constant
results in the behaviour which is depicted in fig. 10 and 11. In
these two cases, the MIT rule (red) does not yield successful
adaptation whereas using the Lyapunov rule (green) shows
excellent results and almost perfect following of the reference
trajectory (blue).
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Fig. 9. Time response for am = 10.
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Fig. 10. Time response for am = 0.5.
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Fig. 11. Time response for am = 0.3.
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Fig. 12. Time response for bm = 0.5.

Further experiments with different value combinations re-
veal that significant differences between MIT and Lyapunov
rule occur if am is considerably lower than a. On the other
hand, in the case of am > a the results are almost similar.
Taking into account the similarities between the two different
update laws in eq. (25) and (30) as well as eq. (26) and (31)
gives an idea of the underlying reason: The only difference is
that the MIT rule features an additional dynamic term which
resembles a low-pass structure. As this filter term incorporates
am as its time constant, lower values than a therefore result
in a delay which is greater than the delay of the process.
This suggests that in the example discussed here the MIT rule
update law is conceptually slower than required if am < a.

The second parameter bm determines the system gain and
the resulting output error is examined for different values of
bm (the plant process features b = 0.5). It can be seen from
the results in fig. 12 to 15 that higher values for this reference
model gain parameter cause similar behaviour as already seen
when varying the adaptation gain.

Although the MIT rule may lead to instability for high
gain values as seen in fig. 15 (bm = 50), it also shows
advantages in the case bm = 10 (fig. 14). In contrast to the
results when using the Lyapunov rule, the oscillations in the
time response are of smaller amplitude. This can be related
to the additional filter term in the MIT rule which damps
oscillations of certain frequencies in the output signal. The
high-frequency oscillations observed here are a well-known
phenomenon which occurs when using high-gain control. As
these pose a serious problem in practical applications, modified
MRAC algorithms have been developed [8] and [9].

V. CONCLUSION

Model reference adaptive control is intended to ensure that a
system with unknown or time-variant system parameters yields
a desired closed-loop behaviour. The foundations of MRAC
using two different adaptation laws are outlined in the first
part of this article.

The second part describes the behaviour of a simulated first
order system with two unknown parameters. It is analysed
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Fig. 13. Time response for bm = 2.0.
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Fig. 14. Time response for bm = 10.
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Fig. 15. Time response for bm = 50.

how different values for the adaptation gain parameter affect
the overall system performance. The results achieved in [1]
and [2] are confirmed. The Lyapunov rule adaptation law is
found to be superior to the MIT rule in these cases.

Furthermore, changes in the reference model parameters are
analysed for both update laws. The effects which are observed
here are then related to the different mathematical structures
of the update laws. While both lead to similar results if am >
a, the Lyapunov rule shows superior behaviour in the case
am < a.

In [10] the effect of adaptation gain for a second order
system using the MIT rule is analysed. Based on the results
in this article, an interesting topic for further research would
be to discuss second order systems using both MIT rule and
Lyapunov rule and also focus on changes to reference model
parameters.

It can be concluded that although an adaptive controller may
control a plants behaviour to match the one of a predefined
reference model in theory, several limitations underly the
practical realisation. Rigorous testing and simulation with
relevant input signals and parameter choices are necessary in
order to ensure satisfactory behaviour.
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