
Formalisation and algorithmic approach to the automated driving
validation problem

Jan Erik Stellet, Tino Brade, Alexander Poddey, Stefan Jesenski, Wolfgang Branz

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— Automated driving road vehicles are to operate in
an unstructured, public real-world environment. The openness
of the operational design domain, the serious safety risk,
the complexity of the system itself, as well as the regulatory
situation pose a large challenge to the automotive industry.
Thus, a strategy is necessary to ascertain the validity of such
systems. An extensive formalisation of the problem and its root
cause, the deductive gap, is provided in the authors’ work [1]
and described in a compact version in this paper.

Thereto, the interdependent aspects purpose, context and re-
alisation are detailed. This allows us to establish why deductive
gaps between the required, the specified and the eventually
implemented behaviour can occur. These gaps are caused by
violations of underlying assumptions. Identifying such violated
assumptions is the main goal of a novel algorithmic approach.
Furthermore, the contributions and aspects left uncovered by
normative regulations, i.e. ISO 26262 and ISO PAS 21448, are
established.

I. INTRODUCTION

In the recent years, there has been a rush towards highly
autonomous systems operating in public environments, such
as automated driving of road vehicles, passenger shuttle
systems and mobile robots. These systems, operating in un-
structured, public real-world environments – the operational
design domain can be characterized as open context – per
se bear a serious safety risk.

Due diligence is necessary in development, release and
even post release operation, which are all related to validation
aspects. Otherwise, a ‘winter of autonomous systems’ [2]
might come down and the large investments taken, e.g. in
the automotive industry, will not pay-off.

The contribution of this paper is a formal analysis of
the fundamental challenges related to the valid design and
operation of open context systems (Sec. II). Thereby, a sim-
plified1 representation of the authors’ work [1] is provided.
This analysis is followed by an investigation of normative
regulations given by the ISO 26262 [3] as well as ISO PAS
21448 [4] in Sec. III. In order to address the crucial but yet
unspecified aspect of aligning assumptions with validation
activities, an algorithmic approach is proposed in Sec. IV.

The authors are with Robert Bosch GmbH, Corporate
Research, Robert-Bosch-Campus 1, 71272 Renningen, Germany
firstname.lastname@de.bosch.com
www.bosch.com/research

1Sec. 2 in [1] contains a more detailed account on the notions of purpose,
context and realisation as well as deductive gaps than provided in Sec. II-A
to Sec. II-B of this paper. Furthermore, Sec. 3.1 of [1] presents an extended
version of the 3-circles model, including a fourth circle related to assumption
monitors, compared to the one given in Sec. II-C.

Figures

Internal | CR/AEV2-VAL | 24/08/2017
© Robert Bosch GmbH 2017. All rights reserved, also regarding any disposal, exploitat ion, reproduct ion, edit ing, dist ribut ion, as well as in the event of applicat ions for indust rial property rights.

1

Triangle

Context

Purpose

Realisation

Interdependencies

Fig. 1: The interdependence among the purpose, context and
realisation is referred to as validation triangle [1].

II. CHALLENGES FOR THE VALIDATION OF OPEN
CONTEXT SYSTEMS

Autonomous systems operating in public environments
are usually designed to take over typical human tasks, e.g.
driving road vehicles. The technical systems thereby do not
only need to fulfil the tasks from a functional point of view.
They also need to take over responsibility for safe operation
and mitigation of hazardous situations, traditionally incurred
by the human operator. This requires a significantly more
extensive and reliable understanding of the context than e.g.
in driver assistance systems.

A. The notion of validity

The complexity of the system and the context require
several topics to be addressed in a systematic and holistic
approach in order to achieve a valid system. This means that a
product bears no unreasonable risk2 to users and the society
(e.g. safety and security risks), and, albeit subordinated,
no unreasonable risk to the manufacturer (e.g. liability and
costs). Note that the definition of unreasonable risk is closely
related to the (societal) tolerated risk which is a complex
topic and even a moving target.

B. The relation between purpose, context and realisation

In general, providing a valid solution to a given task is re-
lated to developing, designing or implementing a realisation
R (e.g. a technical system) for a purpose P (e.g. automated
driving on a highway), which needs to be fulfilled in a
specific context C (e.g. on German highways at daytime).

2According to ISO 26262 [3]: ‘Risk judged to be unacceptable in a certain
context according to valid societal moral concepts.’

www.bosch.com/research

The interdependent elements P, R, C are referred to as
validation triangle, see Fig. 1.

The fundamental challenge of validating complex open
context systems is that none of the three vertices of the
validation triangle can be expressed in a formally complete
manner and the expression of one aspect even depends on
the remaining two. This will be discussed per aspect in the
following.

1) Purpose: The purpose is based on implicit expecta-
tions. As an example, consider the ambiguous expectations
that on the one hand, an automated vehicle on a highway
shall drive defensively, e.g. leave sufficient gaps for lane
changes, but on the other hand show an agile driving style
to not slow down the traffic flow. Such implicit expectations
are referred to as the aimed purpose.

The aimed purpose has to be transformed to explicitly ex-
pressed expectations which results in the intended purpose.
However, such explicit statements about a certain purpose de-
pend on the related context of application and therefore most
often are based on assumptions. More precisely, the customer
or even the society might be able to express an expectation
e.g. about appropriate behaviour of the system for a given,
specific setting (related to a specific realisation in a specific
context). However, it is non-trivial or rather impossible to
identify all relevant settings. Therefore, explicit expectations
are usually expressed quite abstract which leaves open room
for quite different (setting specific) interpretations.

2) Context: The unstructured real-world operational de-
sign domain can be characterized as an open context. It
bears infinitely many characteristics, possible interactions
and effects (∞-complexity). Moreover, the context develops
in time (it is evolving) with so far unseen characteristics and
interactions appearing suddenly.

In addition, the necessary mapping of the ∞–complex
context onto a reduced subset of an expected to be relevant
context strongly depends on the related specific purpose and
realisation. For example, if the realisation contains a video
sensor, mainly the visual appearance but not the materials of
the context elements are relevant whereas for a radar sensor,
the opposite is true.

3) Realisation: The properties of complex systems are
emergent. I.e. the effective properties and behaviour of a
realisation are the result of a complex interplay of the com-
ponents (emergent characteristics and emergent behaviour).
Therefore, analysing components is in general not sufficient
to argue about the safety of the entire system [5].

C. Open context system behaviours

The previous section makes clear that developing complex
systems for open contexts necessarily deals with simplified
representations of the complex reality for the interdependent
aspects of purpose, context and realisation. Given these
inherently limited representations, one can differentiate be-
tween the required, specified and implemented behaviour
of an open context system. Here, behaviour is understood
as interaction of the system with the environment, i.e. what

is observable from the outside in contrast to internal state
variables.

First, the required behaviour describes, from an omniscient
perspective, what is the required behaviour in order to serve
the purpose of the realisation in its context. In other words,
this is the behaviour that we aim for in order to provide
a valid and safe system.3 Any deviation from the required
behaviour is a failure.

Second, the term specified behaviour refers to what is
explicitly understood and formalised, e.g. in the form of
requirements, as a valid system. The specification is derived
from an understanding of the purpose and context, i.e. the
intended purpose and expected to be relevant context. It is
the foundation for the design and implementation work.

Third, the implemented behaviour is what is actually
achieved with the realisation. This might differ from the
specified behaviour, e.g. due to emergent characteristics of
the realisation as well as differences between the specified
and the effective context.

The three kinds of behaviour and the possible relations
between them are visualised in Fig. 2a. Except for the central
set 3, all enumerated areas refer to distinctive deviations of
the realisation fulfilling its purpose within its context. These
areas will be later referred to for the question of how to
achieve a valid system. Beforehand, further details on the
deductive gap, which is the main reason for imperfections
to occur, will be given.

D. Deductive gap

Building a model is a form of deduction. Different types
of deductions appear all along the process from the initial
formulation of a product idea to the implementation of a
concrete product. An example from the top-most level would
be specifying the intended purpose, the relevant aspects of
the context and the characteristics of the realisation (e.g. as
set of requirements and constraints).

The unavoidable deductions however are at the heart of the
validation problem [6]. Every model building is necessarily
based on explicit and most often even implicit assumptions.
If these assumptions are (temporarily) invalid, the deduced
representation will become invalid. This is referred to as de-
ductive gap and insufficiency of the deduced representation.

One specific instance of a deductive gap is that the
specified behaviour is different from the required behaviour
(specification gap, see Fig. 2a). Violated assumptions about
the purpose, i.e. when interpreting the aimed purpose, or
about the context, e.g. the perception of objects by environ-
ment sensors, are typical causes for a specification gap.

Likewise, it is possible that the realisation shows an
implemented behaviour that is different from what is spec-
ified (implementation gap). This might occur, e.g., because

3Note that the term required (another possibility would be desired)
behaviour is intentionally chosen over intended behaviour. On the one hand,
ISO 26262 defines a failure as the ‘termination of the ability of an element
to perform a function as required’. On the other hand, the term ‘intended
behaviour’ already has a different meaning in ISO PAS 21448 which equals
our definition of the specified behaviour, cf. Tab. I.

Header of section

Internal | CR/AEV2-VAL | 24/08/2017
© Robert Bosch GmbH 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

1

3 circles

Implemented
behaviour

Specified
behaviour

1

5
2 4

7

6

3

Required
behaviour

Missing
specification

Implementation gap

Unexpected
behaviour Wrong

specification

(a) Visualisation of the relations between required, specified and
implemented behaviour.

Area Description

1 Missing knowledge (specification) of required
behaviour

2 Robust unspecified behaviour

3 Implementation behaves as specified as well as
required (ideal)

4 Missing implementation of correct specification

5 Unexpected wrong behaviour

6 Wrong specification or technical limitation

7 Missing implementation of wrong specification

(b) Description of the areas in a.

Fig. 2: 3-circles model: The enumerated areas relate to qualitatively different parts of the validation challenge.

requirements have been implemented incorrectly, because the
system is operated in a context different from the specified
one or due to emergent characteristics of the realisation.

The validation challenge is closely related to the many
necessary deductions applied during development:

• all underlying assumptions need to be made explicit and
• for each assumption, evidence needs to be provided for

its validity.
In order to generate evidence, hypotheses need to be formu-
lated and checked, e.g. by formal approaches, simulation and
real world observation. Note that hypothesis checking based
on (implicit) models needs to be done carefully, as applying
the same approximations in the derivation and interpretation
of hypothesis checks might lead to a self-fulfilling prophecy
and hence to a wrongly passed test, providing an unfounded
argument [9].

In the following, two normative regulations applying to
safety of driver assistance systems will be analysed with
regards to specification and implementation gaps.

III. NORMATIVE REGULATIONS

There are currently two norms with regard to safety-
related E/E systems in series production vehicles. ISO 26262
[3] addresses ‘possible hazards caused by malfunctioning
behaviour’ but excludes the ‘nominal performance’ of said
systems. In addition to this, the scope of ISO PAS 21448
[4] includes ‘hazards resulting from functional insufficiencies
of the intended functionality or by reasonably foreseeable
misuse by persons’.

A. ISO 26262

ISO 26262 provides a comprehensive definition of a ‘fail-
ure [being] the termination of the ability of an element, to
perform a function as required’. Since ‘function as required’
can be mapped to our definition of required behaviour (see
Tab. I), this comprises all gaps in Fig. 2a.

However, the scope of the standard excludes the ‘nom-
inal performance of E/E systems’. Instead, it focusses on
‘malfunctioning behaviour’, i.e. ‘a failure or unintended
behaviour of an item with respect to its design intent’.
To ensure the integrity of the implementation, ISO 26262
imposes requirements for the development (cf. ASIL) and
for the control of random hardware faults.

As already mentioned above, ISO 26262 does not address
the question of the necessary nominal performance in order
to be considered as safe. Using the model from Fig. 2a this
question can be formulated as

• Under which circumstances (due to nominal perfor-
mance issues) does the implemented behaviour not
correspond with the required behaviour (areas 5 and 6)?

• Is this discrepancy acceptable?

Therefore, ‘for some systems, which rely on sensing the
external or internal environment, there can be potentially
hazardous behaviour’ [4] although the system is not affected
by faults in the scope of ISO 26262.

The challenges in applying ISO 26262 to driver assis-
tance systems, e.g. automatic emergency braking, have been
pointed out in [6], [7]. One central aspect concerns that in a
layered development approach (e.g. V-Model), each layer of
abstraction refines the specification of the previous one (i.e.
from top level safety goals down to the implementation).
Thereby, it is implicitly assumed that the deductive step
from one layer to the next is correct. However, if this
deduction depends on assumptions that can be violated, a gap
in the refinement chain occurs. Although the implemented
modules and systems can be verified against their respective
specification, it depends on the correctness of the deductive
steps, whether the safety goals are achieved.

Additionally, ISO 26262 assumes a given ‘item definition’
which makes the ‘requirements of the item as well as the
dependencies between the item and its environment’ explicit.
From the discussion in Sec. II-B it becomes clear that

TABLE I: Mapping of terminology in ISO 26262 and ISO PAS 21448 (SOTIF) to the model from Sec. II.

3-circles model (Fig. 2a) ISO 26262 ISO PAS 21448

Terminology: Required behaviour ‘function as required’ –
Specified behaviour ‘intended functionality’ ‘intended functionality’, ‘intended behaviour’
Implemented behaviour – ‘implementation of the intended functionality ’

achieving this with sufficient completeness is challenging in
open contexts.

B. ISO PAS 21448 (SOTIF)

ISO PAS 21448 – commonly referred to as SOTIF (‘Safety
of the Intended Functionality’) – ‘addresses intended func-
tionality where proper situational awareness is critical to
safety, and where that situational awareness is derived
from complex sensors and processing algorithms’, e.g. in
automatic emergency brake systems4.

As such it supplements the scope of ISO 26262 to ‘func-
tional insufficiencies of the intended functionality or from
reasonably foreseeable misuse by persons’ mainly for auto-
mated driving functions which are affected by the open world
issue. These functional insufficiencies can be either caused
by performance limitations (i.e. functional insufficiencies
of the implementation itself) or by an incorrect specified
behaviour, corresponding to the areas of 1, 5, 6 and 7 in
Fig. 2a, the specification and the implementation gap. Thus,
ISO PAS 21448 in combination with ISO 26262 can address
all critical areas in Fig. 2a for these systems.

ISO PAS 21448 stipulates to exploit understanding about
the system and the context in order to ‘identify the system
weaknesses (including those of its sensors, algorithms, actu-
ators) and the related scenarios’. To this end, the notion of
‘triggering events’ is introduced, which describe conditions
of a driving scenario that may trigger a system response
potentially causing a hazardous event.

Triggering events constitute instantiations of the
∞–complex context. Thus, identifying them without
proper use of system understanding is a hopeless endeavour.
ISO PAS 21448 points out that ‘the analysis can be
supported by inductive and/or deductive methods’, which is
precisely what shall be substantiated with the algorithmic
approach in the following section.

IV. ALGORITHMIC APPROACH TO ALIGN ASSUMPTIONS
WITH VALIDATION ACTIVITIES

Although both ISO 26262 and ISO PAS 21448 call for
the consideration of assumptions, they do not regulate how
to exploit this knowledge for the detection of deductive gaps.
For that reason, a novel algorithmic approach (algorithm 1)
is provided in order to align the knowledge available about
assumptions with validation activities.5

4Even though the scope of ISO PAS 21448 is limited to L1 and L2
driver assistance systems [12] it needs to be taken into consideration for
true automated driving systems (SAE L3-L5).

5The relation of algorithm 1 to the algorithms given in Sec. 3.2 of our
previous work [1] is as follows: The first two steps given in Sec. IV-A and
Sec. IV-B can be found with more details in [1]. The subsequent steps from
Sec. IV-C and Sec. IV-D are novel extensions of the scope of [1].

The algorithm operates upon a high-level description of
the purpose and the context, which are considered to be
given. To obtain a high-level description for the context, e.g.
the layered model described in [11] can be used as a starting
point. Obviously, these descriptions are rather abstract but
this is seen as a key for a description that holds in case
of an open context. Furthermore, a too restrictive high-level
description limits our capabilities to identify deductive gaps.

Once the input is provided, the algorithm investigates
within four steps the chances for a deductive gap due to
assumptions, which are made during the refinement of the
purpose as well as context description and its realisation.
Note that although the first two steps merely refer to external
activities and therefore provide no active contribution, they
are necessary since a failing in the third step requires us to
go back and revise them accordingly.

A. First Step – Refinement

The first step aims for a refinement of the purpose and
context description where the strong dependency between
them makes a crosswise concretisation necessary, cf. [1] for
details. To attain this, a top-down analysis of data-bases [8],
use case catalogues, observed failings of traffic users as
well as the systematic generation of obstacles [10] seems
beneficial.

While refining descriptions, care must be taken to note
the underlying assumptions. On the one hand, assumptions
narrow the context under which the description holds but,
on the other hand, they provide an explanation of why the
refined descriptions can dominate the variety of the required
behaviour.

B. Second Step – Realisation

After the descriptions of purpose and context have been
refined, the second step focuses on the realisation. The
realisation entails a composition of functionalities whose
behaviour must comply with the refined purpose and context.
A compliant realisation is found if verification activities have
shown that the specified behaviour is part of the implemented
behaviour. Here, verification is understood as an activity
that states the compliance (|=) of something given with
something specified. Different granularities exist for this
compliance check, which range from review and consistency
checks up to a formal proof.

It must be clear though that the verification is only
conclusive up to the degree to which the required is made
explicit. Hence, verifying that the specified behaviour is part
of the implemented behaviour does not imply that the two
are equal. Therefore, unwanted implemented yet unspecified

Algorithm 1: Algorithm that aligns assumptions with validation activities.
Data: P1&C1 as a description of the purpose and context, respectively
Result: R as a realisation w.r.t the refined set of P&C

1 Refine P = P1 OR C = C1 and note the assumptions (A) under which the refinement holds
2 Provide a realisation R for P&C and note the assumptions (A) being made so that R (C) |= P

if no realisation can be found then
if no refinement was possible then

discard the refinements being made
end
continue with 1 to seek for a realizable refinement of P&C

end
3 Investigate the assumptions (A) by

(a) Checking their consistency
if not consistent then discard the inconsistent part of R and continue with 2;

(b) Exploring conditions that can contradict them, as follows:
for i← 1 to ‖A‖ do

(i) Explore conditions (Cd) so that Cd→ ¬Ai

(ii) Associate Cd with C
if not possible then continue with 1 to refine the context;

(iii) Check whether another assumption Aj can compensate for ¬Ai,
if not possible then discard the realisation where ¬Ai is involved and continue with 2;
else Note assumptions under which another assumption Aj prevails against ¬Ai;

end
(c) Showing that the instances of A are

(i) Repeatable under various C so that (R (C) | A) |= P
if not possible then continue with 2 and discover hidden assumptions;

(ii) Unambiguous under various C so that (R (C) |¬A) |= ¬P
if not possible then continue with 2 and discover hidden assumptions;

4 Provide a validation strategy to explore possibilities for R (C ∨ C1)→ ¬P1

(a) Define reject criteria
(i) Formulate hypotheses on A&P and define respective monitors

(ii) Show effectiveness of monitors on hypotheses, as defined in 3(c)
if not possible then redo 4(a)(i);

(b) Define conditions for the strategy in order to
(i) Confirm the known - especially the results from 2 and 3(c)(i)

(ii) Explore the unknown
(iii) Formulate stopping criteria w.r.t 4(b)(i)&(ii)

(c) Conduct the strategy until stopping criteria is satisfied

(area 5) behaviour or required behaviour that is missing in
the specification (area 1) are not covered.

In order to deal with these additional sets, the assumptions
need to be noted under which the realisation can serve
the purpose while being exposed to the specified context.
Recalling that the assumptions noted in the first step describe
conditions about the requirements, the assumptions noted
in the second step indicate necessary conditions for the
operationalisation of these requirements, which finally allows
us to investigate assumptions, as described next.

C. Third Step – Investigation of Assumptions

The third step investigates the assumptions resulting from
the first two steps in order to locate where deductions are

made on the basis of invalid assumptions, which can cause
a deductive gap.

First, the consistency of assumptions must be checked (see
3(a) in algorithm 1) since inconsistent assumptions indicate
that the realisation will certainly be unable to behave as
described. The difficulty of this is not to find contradictions
between assumptions but rather to ascertain semantic mis-
matches that mask included inconsistencies. It goes without
saying that inconsistencies require us to discard the part of
the realisation where a conflicting assumption is involved,
which sets us back to the second step so that we can redesign
or revise the conflicts.

Second, given that the assumptions are free from contra-
dictions, step 3(b) seeks for conditions by which assumptions

become invalid. To this end, assumptions are systematically
turned into something invalid in step 3(b)(i), e.g. by adding
specific prefixes as known from HAZOP [10]. Next, possibil-
ities must be explored so that these conditions appear within
the presumed operational context. If no such condition can
be found, it is recommended to start again with the first
step in order to refine the context. Note that the refinement
is not focused on functional aspects driven by the purpose
but rather on conditions where the assumption may become
invalid.

Even if this refinement is exhausted, conditions outside of
the operational context should be considered in order to show
that the realisation cannot encounter them. In principle, this
is the objective of step 3(b)(iii) where additional assumptions
must be found that can compensate for the invalid assump-
tion. If no such assumption can be found, a deductive gap is
found since conditions are known by which an assumption
becomes invalid. This requires the realisation to be revised.
In cases where the realisation can cover for the loss of an
assumption by another, the conditions must be stated by
which one assumption prevails against another. On the one
hand, these conditions provide the basis for a rational of why
the considered deductive gap cannot occur but, on the other
hand, they involve further assumptions, which require us to
go through the steps of 3(b) as long as further assumptions
appear.

Third, after steps 3(a)&(b) show the absence of deductive
gaps with respect to the available knowledge, step 3(c) deals
with the question whether the alleged understanding about
assumptions is correct. Therefore, it is proposed to probe the
cause-effect relationship where the realisation in a specific
context is considered the cause whereas its behaviour is
comprehended as an effect that becomes visible under certain
assumptions.

It stands to reason that a disagreement among a cause, an
assumption and an effect indicates a deductive gap. To find
such disagreements, it must be shown that the cause-effect
relationship is repeatable but not ambiguous (compare step
3(c) of algorithm 1).

Repeatability (step 3(c)(i)) means to demonstrate that the
purpose (P) is met under various contexts. Its peculiarity is
that the context must be set so that a specific assumption
becomes necessary, which is a substantial difference com-
pared to step 2 where (R(C) |= P) is solely focused on the
purpose.

The next step 3(c)(ii) checks whether the relationship is
unambiguous, which presupposes that the purpose cannot
be satisfied under invalid assumptions. Unlike step 3(c)(i),
demonstrating the unambiguity requires some kind of failure
injection in addition to the use of the right context so that
the system collapses in consequence of invalid assumptions.
If we are unable to show that our understanding about the
known assumptions is repeatable and unambiguous, hidden
assumptions regarding the realisation must be discovered,
which requires to continue with step 2 of algorithm 1.

Further knowledge about assumptions inevitably enhances
our understanding in that conditions affecting an assumption

can better be associated with a specific context (compare step
3(b)(ii)). In addition, more knowledge about assumptions
facilitates the identification of assumptions that stand in for
others (see step 3(b)(iii)).

D. Fourth Step – Validation

First of all, we must define reject criteria (step 4(a)) by
which we can take notice that the realisation is invalid. Since
the challenge here is to bridge the gap between an abstract
and a concrete representation, we therefore merely formulate
a hypothesis about indications for a violation of the described
purpose or its respective assumptions.

In addition, a monitor is required to operationalise the
formulated hypothesis so that a violation of the specified
purpose as well as known assumptions can be observed
during the operation of the realisation (step 4(a)(i)). To make
sure that both the hypothesis and its monitor are effective
with respect to what is known, it is important to show
that both provide repeatable and unambiguous results, as
described in step 3(c).

With these monitors at hand, a validation strategy should
be conducted in order to show that nothing contradicts our
monitored expectations and that we are unable to provoke
such contradictions. The former aspect (step 4(b)(i)) aims
to confirm the known in that, even if assumptions are left
unknown, it does not matter. This implies the definition of
targets in order to expose the realisation to a defined set
of context elements. The latter aspect (step 4(b)(ii)) is to
explore the unknown by running into a context that is not
yet tested. Since unknowns cannot actively be discovered,
we must probe the realisation within the randomness of the
context.

Regardless of the strategy used, stopping rules have to be
defined (step 4(b)(iii)). However, can we consider a realisa-
tion as valid (R (C ∨ C1) → P1) once the stopping criteria
are satisfied (step 4(c))? The satisfaction of stopping rules
usually indicates the absence of risks beyond a certain thresh-
old (residual risk) which shall be lower than the unreasonable
risk. However, since we are lacking future knowledge about
the validation triangle – due to unforeseeable changes to
e.g. societal expectations and the context – the notion of
sufficiently valid is preferred, which accepts the need for
ongoing observation.

Ongoing observation refers to the monitoring of hypothe-
ses, as described in step 4(a)(i), after the realisation has
been deployed. A detailed account on this monitoring is
provided in [1]. This yields an extended version of Fig. 2a
with additional areas.

E. Aspects to consider when applying the algorithm

The implementation of algorithm 1 poses challenges on
how to master the variety of traces between the refined
purpose and context descriptions. With these traces at hand,
it becomes clear which parts must be revised if a deductive
gap is detected. Besides the handling of failings where the
algorithm requires going back to a previous step, the handling
of traces is key to identify deductive gaps when switching

from one purpose to another. To this end, one must be able to
search for specific elements of context that implies a purpose
so that the steps 3 (b & c) and 4 (b)(i) become possible. For
managing these traces, the use of ontologies is advisable
because the related description elements facilitate to reason
about hidden assumptions. In addition, it is worth considering
a structured process in order to note the assumptions when
designing a realisation (cf. step 2).

V. CONCLUSION

This work provided an analysis of challenges that affect
the validity of complex systems operating in an open context,
such as self-driving vehicles. Since an open context features
infinite characteristics, limitations in the model of reality
being used to derive design decisions will thus be inevitable.

Due to this, the role of assumptions has been elaborated
on with a particular focus on causes for invalidity and the
effects. Invalid assumptions have been identified as causes
for a specification or implementation gaps. Since these gaps
are the underlying reason for an invalid system, normative
regulations given by the ISO 26262 and ISO PAS 21448
(SOTIF) have been analysed. It turned out that the com-
bination of both standards can deal with the specification
and implementation gaps but leaves the role of assumptions
unregulated.

To this end, an algorithm to align the knowledge about
assumptions with validation activities has been proposed.
Nonetheless, the proposed alignment is limited to known
assumptions. The exploration of unknowns depends on the
applied validation strategy. However, the infinite characteris-
tics of an open context – especially considering potential
future changes – prevent applying a formal criterion of
completeness. For this reason, we argue for an ongoing
observation in order to have at least a chance to detect
unknowns.

REFERENCES

[1] Alexander Poddey, Tino Brade, Jan Erik Stellet, and Wolfgang Branz:
”On the validation of complex systems operating in open contexts.”
arXiv preprint arXiv:1902.10517, 2019.

[2] Shai Shalev-Shwartz, Shaked Shammah and Amnon Shashua: ”On a
formal model of safe and scalable self-driving cars.” arXiv preprint
arXiv:1708.06374, 2017.

[3] International Organization for Standardization, “Road vehicles – Func-
tional safety,”, ISO 26262, 2011.

[4] International Organization for Standardization, “Road vehicles – Safety
of the intended functionality,” ISO PAS 21448, 2019.

[5] Yrvann Emzivat: ”Safety System Architecture for the Design of De-
pendable and Adaptable Autonomous Vehicles.” PhD thesis, Centrale
Nantes, 2018.

[6] Bernd Spanfelner, Detlev Richter, Susanne Ebel, Ulf Wilhelm, Wolf-
gang Branz and Carsten Patz: ”Challenges in applying the ISO 26262
for driver assistance systems.” Tagung Fahrerassistenz, München, 2012.

[7] Ulf Wilhelm, Susanne Ebel and Alexander Weitzel: ”Functional Safety
of Driver Assistance Systems and ISO 26262”, in Handbook of Driver
Assistance Systems: Basic Information, Components and Systems for
Active Safety and Comfort, pp. 109–131, Springer International Pub-
lishing, 2016.

[8] PEGASUS project, https://www.pegasusprojekt.de/en/.
[9] Tim Kelly and Rob Weaver. ”The goal structuring notation – a safety ar-

gument notation.” Proceedings of the dependable systems and networks
2004 workshop on assurance cases, 2004.

[10] Brian Tyler and Frank Crawley. HAZOP: Guide to Best Practice.
Elsevier, 2015

[11] Fabian Schuldt, Ein Beitrag für den methodischen Test von automa-
tisierten Fahrfunktionen mit Hilfe von virtuellen Umgebungen. PhD
thesis, Technische Universität Braunschweig, 2017.

[12] SAE International, “Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles,” SAE Standard
J3016 JUN2018, 2018.

https://arxiv.org/abs/1902.10517
https://arxiv.org/abs/1708.06374
https://www.pegasusprojekt.de/en/

	Introduction
	Challenges for the Validation of Open Context Systems
	The notion of validity
	The relation between purpose, context and realisation
	Purpose
	Context
	Realisation

	Open context system behaviours
	Deductive gap

	Normative Regulations
	ISO 26262
	ISO PAS 21448 (SOTIF)

	Algorithmic approach to align assumptions with validation activities
	First Step – Refinement
	Second Step – Realisation
	Third Step – Investigation of Assumptions
	Fourth Step – Validation
	Aspects to consider when applying the algorithm

	Conclusion
	References

