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Abstract— Autonomous emergency brake (AEB) systems
have to decide on brake interventions based on an uncertain
and incomplete perception of the environment. This paper
analyses theoretical limitations in AEB systems caused by noisy
sensor measurements and uncertain prediction models. Such
performance bounds can be used to derive sensor accuracy
constraints, to identify challenging scenarios or to develop
objective metrics.

In contrast to most previous studies, this work focusses on
analytical derivations. To this end, the Cramér-Rao bound of
the best attainable state estimation covariance is derived from
a model of sensor measurement errors. This state- and time-
dependent covariance is then propagated to an AEB decision
making logic that is based on a criticality measure. Additional
inherent prediction uncertainty in this risk assessment is taken
into account. The effectiveness of the AEB subject to uncer-
tainties is compared to the deterministic baseline case in terms
of the brake activation time and the collision energy reduction.

I. INTRODUCTION

Autonomous emergency brake systems employ surround
environment perception in order to detect critical driving
situations and to perform an emergency brake intervention, if
necessary. Fig. 1 depicts a typical use case. On a high level of
abstraction, an AEB system is described by the concatenation
of an environment sensor for perceiving obstacles, a tracking
filter for estimating the motion state and a situation risk
assessment logic for triggering a brake intervention. This
signal processing chain is outlined in the upper part of Fig. 2.

However, due to measurement errors and an incomplete
environment perception, the decision making is subject to
uncertainties. This work addresses the question of how un-
certainties affect the timely activation of a brake intervention
and how this varies among different scenarios. In particular,
upper, optimistic bounds are to be derived. Such a study
can be useful for many purposes [1], e.g. the definition of
requirements, sensitivity analyses or for adjusting the sensor
and system parameters.

To this end, probabilistic models of uncertainty in an
exemplary AEB signal processing are assumed as shown in
the lower part of Fig. 2. The foundations of these models
have been presented in the authors’ previous works. The
modelling approach considers uncertainties in stereo vision
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Fig. 1: Illustration of an AEB intervention scenario.

measurements [2], state estimates, vehicle trajectory predic-
tions [3] and algorithms for risk assessment [4].

This paper entails the following contributions: First, a
framework which integrates the aforementioned individual
models is proposed in Sec. III-B. Second, explicit expres-
sions for the collision energy reduction achievable by an
AEB system are derived in Sec. IV-A. Third, an aggregate
overall assessment is obtained in Sec. IV-C by weighting
with empirical scenario parameter distributions.

The outline of this work is as follows: Differences and
similarities to existing works are detailed in Sec. II. Subse-
quently, Sec. III introduces the representation of scenarios,
the modelling of uncertainties in the AEB system and a met-
ric to assess the difference between the ideal and uncertain
case. Sec. IV presents numerical results for an exemplary
parametrisation and discusses their implications. A summary
in Sec. V concludes this work.

II. RELATED WORK

Previous related publications differ by the use of numerical
or analytical methods for uncertainty propagation.

Numerical studies are presented in [5] for vehicle collision
avoidance systems and pedestrian protection in [6], [7]. The
latter works investigate the expected benefit of different
evasive manoeuvres under uncertain future motion of the
pedestrian. The probability and severity of the simulated
accidents are used as evaluation metrics.

A drawback that is shared by these simulation-based ap-
proaches is that they rely on actual implementations of (sub-)
optimal algorithms, e.g. state estimators. Thus, only numer-
ical results that apply to a specific system can be obtained.
More generic conclusions can be drawn with analytical
models. By employing models of theoretical performance
bounds, which apply to any implementation, fundamental
limitations can be revealed.
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Fig. 2: Signal processing chain of AEB system (top) and overview on probabilistic models (below).

Recently, a remarkable, rigorous analytical derivation of
performance bounds in AEB systems has been presented
in [1]. Although a similar objective is pursued in this
work, some distinct differences will lead to conceptually
complementary results:
• Errors in the state estimates are modelled with constant

upper bounds in [1], whereas a fully probabilistic model
is used in this work. This time- and state-dependent
model takes sensor-specific effects into account.

• Since only upper bounds on the errors are considered in
[1], the worst case performance is derived. This work
on the other hand studies the opposite case of optimistic
lower bounds on the error covariances.

• The effectiveness of an AEB system is measured in
terms of the activation timing in [1]. This work ad-
ditionally considers the collision energy reduction as a
metric with a clear physical interpretation.

III. MODELS, PARAMETRISATIONS AND METRIC

This section describes the foundations of the analysis
and comprises three parts. First, the considered scenarios
are formalised in Sec. III-A. Second, the propagation of
uncertainties in the signal processing chain from Fig. 2 is
detailed in Sec. III-B. Finally, the impact of uncertainties
on the AEB performance will be evaluated in terms of the
collision energy reduction. This physically motivated metric
is detailed in Sec. III-C.

A. Scenario representation

The primary type of accidents which are addressed by
an AEB are collisions with a preceding vehicle. According
to [8], these contribute to 30% of all accidents on German
roads. In-depth analyses reveal the cause of approximately
two thirds of these accidents being that the driver of a
preceding vehicle is suddenly forced to brake strongly.

Therefore, rear-end accidents between the ego-vehicle and
one preceding vehicle in longitudinal traffic are considered.
In order to obtain more comprehensive results than only an
evaluation for particular trajectories, a parametrisable model
is introduced to describe entire families of trajectories.

Following the works [1], [5], the longitudinal relative
motion between the two vehicles is modelled with piece-wise
constant accelerations. The preceding vehicle’s trajectories
are modelled relative to the ego-vehicle which reduces the
number of parameters that are needed to describe a scenario.
These parameters are the initial distance x0 > 0, the relative
speed vx,0 ≤ 0 and accelerations. It is assumed that the
preceding vehicle brakes with a constant acceleration ao

x ≤
0 at time t = 0 as depicted in Fig. 1. An AEB brake
intervention of the ego-vehicle starts at the time tB ≥ 0
with a constant deceleration ae

x ≤ 0. The relative motion is
thus defined by a piece-wise constant acceleration ax (t):

ax (t) =

{
ao
x t < tB

ao
x − ae

x t ≥ tB
. (1)

The time evolution of the relative velocity vx (t) and distance
x (t) follows by integrating (1) with the initial values.

A potential inaccuracy of this model occurs if a vehicle
has decelerated until standstill and remains fully stopped
thereafter. This effect is concealed by considering solely the
relative motion. In principle, all derivations can be performed
in a similar manner as presented in the following but taking
the additional special case of a standing vehicle into account.
For conciseness, this is not elaborated here.

One way to visualise the parameter space of the scenarios
is a phase portrait as shown in Fig. 3. Three cases that corre-
spond to different values of ao

x are depicted. An emergency
brake intervention changes the direction of a trajectory. A
collision is avoided if the trajectory does not cross the vx-
axis, which applies to all initial states in the green area of the
phase plane. This subset of initial states is separated from
scenarios where a collision is not entirely avoidable by the
boundary

2x0 (ao
x − ae

x)− v2
x,0 = 0 . (2)

These considerations suggest that the distribution of the
initial states in real traffic situations has to be taken into
account for a meaningful evaluation. Empirical weights are
obtained from the following data sources:
• The initial relative motion state (x0, vx,0) is assumed

to belong to normal car-following behaviour. Therefore,
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Fig. 3: Trajectories and region of avoidable collisions for different object accelerations ao
x in terms of distance x and relative

velocity vx. Solid lines show the trajectory prior to an emergency brake intervention and dotted lines with the emergency
brake (ae

x = −6 m/s2) applied. Green areas in the phase plane denote initial states for which a collision is still avoidable
whereas its effect is only reducible in the red areas.

a dataset which comprises 170 h of raw recordings of
vehicle trajectories is analysed. Further details on this
dataset and its pre-processing are given in [3]. The
resulting distribution is visualised in Fig. 4a.

• The acceleration ao
x of the preceding vehicle, which

eventually causes a collision, is retrieved from the
German In-Depth Accident Study (GIDAS). It is not
the scope of this work to perform a detailed simulation
of each individual recorded accident, since they differ
by a multitude of situation-specific factors. Instead, only
the mean deceleration of the preceding vehicle prior to
the collision is considered. Values for 111 relevant cases
have been identified in [5] and are shown in Fig. 4b. We
remark that only accidents with injuries are contained
in the dataset. Collisions with minor damage are thus
under-represented.

In conclusion, traffic scenarios with an impending rear-end
collision are concisely parametrised by the initial distance
and relative velocity as well as a constant deceleration of the
preceding vehicle. Distributions of the state combinations are
obtained from empirical data.

B. Modelling of uncertainty in an AEB system

This section details the AEB signal processing chain from
Fig. 2 and the probabilistic modelling of uncertainties. First,
a stereo vision sensor is assumed to measure the distance
to a preceding vehicle. These measurements, which are
obtained with a constant sampling time Ts, are affected by
distance-dependent noise. Second, the propagation of the
measurement uncertainty to the state estimates is modelled
by the Cramér-Rao lower bound (CRB). This yields an
optimistic approximation of the estimation error covariance
of any practical filter. Third, a criticality measure termed the
brake-threat-number (BTN) is employed for decision making.
Under ideal conditions, this algorithm guarantees that a col-
lision is avoided by the emergency brake intervention in the
last possible moment. State estimation errors and uncertainty
of motion predictions are propagated to a probabilistic model
of this criticality measure.
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Fig. 4: Empirical distributions of scenario parameters: (a)
Initial relative motion state x0, (b) Object acceleration ao

x.

Note that this analysis can be easily extended to other sen-
sors, criticality measures or dynamical models. The specific
examples shall illustrate typical effects, but most results will
be derived in generic analytical form.

1) Stereo vision distance measurements: Measurements
of the distance to a preceding vehicle are modelled in a
stereo vision sensor’s disparity coordinates d first and later
transformed to Cartesian distances x.

We assume a model of a simplified object detection
algorithm which aggregates a disparity image column-wise,
as detailed in [2]. The measured disparity d that corresponds
to the preceding vehicle is modelled as a Gaussian random
variable d ∼ N

(
µd, σ

2
d

)
. The variance σ2

d is inversely
proportional to the number of image rows n∆v,obj which the
object covers in the image and over which the detection al-
gorithm aggregates. This number can be calculated in depen-
dence of the distance x and the object height hobj. Disparity
measurements d̄i from individual rows i = 1, . . . , n∆v,obj

are assumed to be affected by independent zero mean errors
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with a variance of σ2
d̄
. This leads to the variance σ2

d of the
aggregate disparity measurement d:

σ2
d =

1

n∆v,obj
σ2
d̄ =

x

ckhobj
σ2
d̄ . (3)

A linearisation-based transformation to a Cartesian distance
x ∼ N

(
µx, σ

2
x

)
is given by [9]:

µx =
ckbw
µd

, σ2
x =

(
ckbw
µ2
d

)2

σ2
d =

µ4
x

(ckbw)
2σ

2
d . (4)

Here, ck and bw denote parameters of the camera. Note that
the variance σ2

x is strongly distance-dependent.
2) Motion state estimates: The relative motion between

the two vehicles is written as state vector x := [ x vx ax ]
>

and assumed to follow a constant acceleration (CA) model
with process noise power density Sx. The discrete time state
transition is

xk+1 =

1 Ts
1
2T

2
s

0 1 Ts

0 0 1

xk + wk , wk ∼ N
(
0,Q

)
(5a)

with a sampling time Ts and

Q =

 1
20T

5
s

1
8T

4
s

1
6T

3
s

1
8T

4
s

1
3T

3
s

1
2T

2
s

1
6T

3
s

1
2T

2
s Ts

Sx . (5b)

A motion state estimate x̂k can be calculated for this system,
e.g. with an extended Kalman filter. However, we will not
focus on the implementation of such a filter but on the co-
variance Σx̂k

:= cov (x̂k − xk) of the state estimation error.
The CRB I−1

xk
� Σx̂k

provides an optimistic lower bound
for any unbiased estimator. This bound can be recursively
calculated, see e.g. [10], [11].

Although the phase portrait in Fig. 3 suggests that trajec-
tories which start at different initial states may eventually lie
on the same trajectory, treating them in combined form is not
possible. Using such a compact scenario description, based
on subsets of all trajectories with a common end state, is
proposed in [1]. Unfortunately, this is not applicable if effects
that depend on the state history are taken into account. Since
the CRB is in general time- and state-dependent, trajectories
are considered individually for each triple of initial values
(x0, vx,0, a

o
x) in this work.

Attention has to be paid to the discrete-time nature of the
system. The sampling time Ts determines how frequently
new sensor measurements arrive at the state estimator. This
in turn influences the accuracy of a state estimate Σx̂k

, the
uncertainty in the criticality measure and thus the time at
which a brake intervention will be triggered.

However, it is out of the scope of this work to analyse
the effects of unsynchronised sampling in general. Thus, a
simplified approach is pursued: Firstly, the expected value of
the state estimates are treated as continuous time variables
x̂k → x̂ (t) which corresponds to Ts → 0. Secondly, the cor-
responding covariance matrix Σx̂ (t) := I−1

xk∗ is calculated
from the discrete time recursion until k∗ = d tTs

− 1e.

3) Criticality measures: As in [1], the brake-threat-
number (BTN) is employed.1 This criticality measure quan-
tifies risk as the instantaneous brake deceleration of the ego-
vehicle that is required to avoid an imminent collision. Given
the motion state x, the criticality κ (x) is defined as [12]:

κ (x) = ax −
v2
x

2x
. (6)

Note that κ (x) defines a deceleration and is thus negative.
An AEB emergency brake intervention is triggered if

κ
(
x (t)

)
≤ κ0 (7)

with a threshold value κ0 < 0 that can be interpreted as the
required deceleration for collision avoidance.

Uncertainty in this criticality estimate is modelled by a
Gaussian distribution κ (x) ∼ N

(
µκ, σ

2
κ

)
. The variance σ2

κ

can be calculated from the state estimate’s covariance Σx̂

and a model of the prediction errors. A CA motion model
(5) is implicitly contained in (6) to predict the future relative
vehicle motion. Prediction errors in such kinematic motion
models have been analysed and approximated by Gaussian
white process noise in [3]. The power spectral density Sx of
the noise model has been estimated from recorded vehicle
trajectories.

Propagating these uncertainties to the criticality measure
according to the framework that has been proposed in [4]
yields the following closed-form result:

µκ = κ (x) , (8a)

σ2
κ =

(
∇xκ (x)

)
·Σx̂ ·

(
∇xκ (x)

)> − 2x

5vx
Sx , (8b)

with ∇xκ (x) =
[
v2x
2x2 −vxx 1

]
. (8c)

A Bayesian generalisation of the brake activation condition
(7) to a system subject to known uncertainties reads

P
(
κ
(
x (t)

)
≤κ0

)
=

κ0∫
−∞

N
(
κ;µκ (t) , σ2

κ (t)
)
dκ ≥ 1− α (9)

with a predefined confidence level 1− α [13].
For a given trajectory x (t), the deterministic criterion

(7) can be solved for the time of intervention tB. We
will regard this value as baseline. Similarly, solving the
Bayesian criterion (9) for t yields the braking time tB,U under
consideration of uncertainties. The analysis in Sec. IV will
focus on the difference between both cases.

C. Collision energy reduction metric

In order to assess the effectiveness of an AEB brake
intervention, we follow the approach from [14] and evaluate
the relative reduction of the collision energy. To this end,
the kinetic impact energy Ecoll = 1

2mv
2
coll of an inelastic

collision with the relative collision velocity vcoll and vehicle

1Multiple criticality measures that correspond to different evasive actions
in longitudinal and lateral direction are analysed in [1]. These measures
are eventually combined by taking the minimum value. All findings of this
work concern solely the longitudinal criticality but could be reiterated for
additional measures.
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TABLE I: Model parameter values of numerical example.

Variable Value

Measurement model (3):
ckbw = 121m · pel , σ2

d̄
= (0.1 pel)2 ,

hobj = 1.5m

Initial state covariance: Σx̂0
=diag ([ 100 m2 25 m2/s2 4 m2/s4 ])

Sampling time: Ts = 0.0675 s

Process noise: Sx = 2 · 0.261m2/s6s−1

Confidence level: 1− α = 90%

AEB brake deceleration: ae
x = −6m/s2

BTN activation threshold: κ0 = ae
x = −6m/s2

mass m is calculated. A measure of effectiveness is then
obtained from the difference between the case with (Ecoll,B)
and without brake intervention (Ecoll). After normalising this
difference by Ecoll, one obtains the dimensionless relative
collision energy reduction ∆E ∈ [0, 1]:

∆E =
Ecoll − Ecoll,B

Ecoll
= 1−

(
1− vcoll − vcoll,B

vcoll

)2

. (10)

∆E depends solely on the velocity at the time of collision.
For the parametric trajectory model from Sec. III-A, closed-
form expressions can be derived. Without brake intervention
one obtains

vcoll = vx,0 + ao
xtcoll (11a)

where tcoll denotes the time of collision. If an emergency
brake manoeuvre with a deceleration ae

x < 0 is initiated at
the time 0 ≤ tB ≤ tcoll, vcoll,B becomes a function of tB:

vcoll,B = vx,0 + ao
xtcoll,B − ae

x (tcoll,B − tB) . (11b)

The collision times tcoll and tcoll,B are readily available and
finally, a closed-form expression for ∆E depending on tB
can be derived. We leave out the details here but will provide
more explicit results in the following section. To this end, tB
will be derived for the brake activation criteria (7) and (9).

IV. EFFECT OF UNCERTAINTIES ON AEB BRAKE
INTERVENTIONS

This section uses the previously introduced models to
assess the influence of uncertainties on the effectiveness of an
AEB system. The analysis consists of three parts: First, the
ideal baseline case without uncertainty is studied in Sec. IV-
A. Second, uncertainties are taken into account in Sec. IV-B.
Third, the results are aggregated with the empirical weights
for the scenario parameters in Sec. IV-C.

Numerical results are derived for a specific exemplary
system which is characterised by the parameter values given
in Tab. I.

A. Ideal case without uncertainties

Firstly, the time of activation tB is calculated for the BTN
(6). Inserting the trajectory model (1) into the activation

condition (7) and solving for t yields

tB =


0, x0 ∈ K
− x0

vx,0
− vx,0

2κ0
, ao

x = 0

− vx,0

aox
+

√
v2x,0−2x0aox

(aox)2
κ0−aox
κ0

, ao
x < 0

, x0 /∈ K
,(12)

where the first case refers to a situation in which the
initial state is part of the critical set of states K :=
{x : κ (x) ≤ κ0}.

Secondly, tB is used to calculate vcoll,B from (11b).
Inserted into (10), this yields the collision energy reduction:

∆E =



ae
x

2x0

2aoxx0−v2x,0
, ao

x −
v2x,0

2x0
≤ ae

x ≤ 0

1, ae
x ≤ ao

x −
v2x,0

2x0

, x0 ∈ K{
aex
κ0
, κ0 < ae

x < 0

1, ae
x ≤ κ0

, x0 /∈ K
.(13)

If the initial state is not already critical (third and fourth case
in (13)), the activation timing of the BTN guarantees that the
collision will be avoided (∆E = 1) for a threshold κ0 = ae

x.
Values of ∆E are visualised in Fig. 6a over combinations

of the initial state (x0, vx,0) and κ0 = ae
x. The boundary

of the plateau, which is described by (2) and has been
previously seen in Fig. 3, indicates the region where a
collision is already unavoidable for the initial state.

B. Case with uncertainties

In contrast to the deterministic case, the Bayesian acti-
vation criterion (9) cannot be analytically solved for t in
general. Therefore, the integral is numerically evaluated and
solved for the smallest time tB,U for which the criterion is
fulfilled.

The difference to the deterministic case δtB := tB−tB,U is
visualised in Fig. 5 and three distinct effects can be observed:

1) The worst delays occur at the boundary (2) between
the critical and uncritical region. In these situations,
very limited time is available to increase the confidence
before the brake intervention would have been already
initiated under ideal conditions.

2) Along this boundary, the results deteriorate for increas-
ing distances. This is due to the distance-dependent
accuracy of the stereo vision measurement model (4).

3) Trajectories starting in the area of unavoidable colli-
sions or sufficiently before are less affected by uncer-
tainties. In the first case, (9) is fulfilled almost imme-
diately. In the second case, sufficient time and sensor
measurements are available before an intervention is
required. Thus, the uncertainty in the state estimate is
minimised and small values of the variance σ2

κ (t) are
ensured.

We remark that the obtained values are often multiple
times larger than the assumed system sampling time. This
emphasises the relevance of uncertainties in the system.

Although δtB is not available in closed form in general,
one can derive analytical expressions for the collision energy
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reduction in terms of δtB. To this end, (10) is calculated for
an impact velocity of vcoll,B + ae

xδtB:

∆EU = ∆E − ae
x

δt2Ba
o
x + 2δtB (tBa

o
x + vx,0)

v2
x,0 − 2ao

xx0
. (14)

A delay δtB of an AEB activation reduces the relative
collision energy reduction quadratically. Absolute values of
∆EU are visualised in Fig. 6b.

C. Weighting over scenario distributions

For a meaningful assessment of a system, one has to take
into account that not every scenario occurs with the same
frequency in real world traffic. Therefore, a weighted average
value of the collision energy reduction from Fig. 6 is now
calculated using the empirical distributions from Fig. 4.

Furthermore, it has been assumed so far that sensor
measurements are available right from the time t = 0 of the
other vehicle starting to slow down. However, in practice,
a sensor’s field of view is limited and the first time when
an AEB becomes aware of a possibly threatening situation
depends on the initial state (x0, vx,0). Therefore, the sensor’s
longitudinal range of detection xsens,max is additionally taken
into account. This is a best case assumption since other
effects which might limit a sensor’s field of view, e.g.
dynamic occlusions, are not considered.

Taking these effects into account leads to the results that
are shown in Fig. 7. Each point is the weighted average
of ∆E as previously seen in Fig. 6 over the distribution
of (x0, vx,0) from Fig. 4a for one combination of object
acceleration ao

x and sensor range xsens,max. As is expected,
increasing the sensor range has a positive effect. We note that
even in the baseline case without uncertainties, perfect results
cannot be achieved, especially for high absolute values of ao

x.
As has been seen in Fig. 6a, a collision is never avoidable for
certain combinations of low initial distance and high relative
velocity, due to the limited braking capabilities. Nevertheless,
the weighted average in Fig. 7a reaches values close to one
for ao

x ≥ −6 m/s2. This indicates that human drivers avoid
combinations of distance and relative velocity that are very
sensitive to an unexpected braking of a preceding vehicle.

If these results are furthermore weighted with the empir-
ical distribution of ao

x from Fig. 4b, one obtains the results
shown in Fig. 8. With uncertainties taken into account, the
average effectiveness drops by approximately 20%. Thus,
although an optimistic model with lower bounds on the state
estimation uncertainty is employed, the effect on the eventual
performance of the AEB system is not neglectable.

V. CONCLUSION

This work has analysed the influence of uncertainties on
the collision prevention capabilities of an AEB system. The
analysis is founded on analytical uncertainty propagation
in algorithms for perception, state estimation and criticality
assessment. Results from a numerical example demonstrate
the concrete application of the method.

It is found that uncertainties affect the system’s ability
to perform a timely emergency brake activation depending
on the driving scenario. The worst delays are obtained in
scenarios which start close to an unavoidable collision and
thus leave only little time for plausibilisation. Fortunately,
such situations are not predominant in real world traffic,
as has been seen from empirical scenario distributions.
Therefore, the weighted average results show a high collision
avoidance benefit.

In order to derive the probabilistic model, uncertainties in
sensor measurements are propagated to the state estimation
and criticality assessment layers. Finally, the time, at which a
brake intervention can be initiated with sufficient confidence,
is calculated. Future works could attempt to derive this
timing in a more abstract way, e.g. in a hypothesis testing
framework as discussed in [15], [16]. Moreover, following
the framework proposed in [4], one could investigate the
statistical properties of ∆E in order to derive performance
requirements for sensors and estimation algorithms analo-
gous to (9).

Finally, AEB systems are only one cornerstone on the way
to highly automated driving. Therefore, future works should
address models of more sophisticated algorithms.
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