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Abstract— Active safety systems employ surround environ-
ment perception in order to detect critical driving situations.
Assessing the threat level, e.g. the risk of an imminent collision,
is usually based on criticality measures which are calculated
from the sensor measurements. However, these metrics are sub-
ject to uncertainty. Probabilistic modelling of the uncertainty
allows for more informed decision making and the derivation
of sensor requirements.

This work derives closed-form expressions for probability
distributions of criticality measures under both state estimation
and prediction uncertainty. The analysis is founded on uncer-
tainty propagation in non-linear motion models. Finding the
distribution of model-based criticality metrics is then performed
using closed-form expressions for the collision probability
and error propagation in implicit functions. All results are
illustrated and verified in Monte-Carlo simulations.

I. INTRODUCTION

A. Motivation

Automotive collision avoidance systems are often based
on criticality measures for decision making. The objective is
to detect impending collisions and assess the associated risk
level, i.e. the remaining driver actions in order to avoid an
accident. Therefore, it is intended to quantify how a situation
separates itself from safe, normal driving. Commonly used
criticality measures include the time to collision [1], its
generalisation to 2-D [2], the time to react [3], or the Brake-
Threat-Number (BTN) and Steer-Threat-Number (STN) [4].
If a collision is unavoidable, an autonomous system inter-
vention, e.g. automatic emergency brake, is performed.

False activations of such an intervention are clearly not
acceptable. However, because the criticality measures are
based on an inaccurate and incomplete environment per-
ception, uncertainty in the current and predicted situation
understanding is inevitable. Modelling these uncertainties is
therefore crucial both during the system design stage, i.e.
for the derivation of minimum required sensor performance,
as well as for on-line decision making. Analytical models
are especially important for the latter application but also
provide valuable insights for the system development.

B. Related work

Collision risk metrics usually differentiate between the
risk assessment for a predicted collision and the special case
where no imminent collision is predicted. Thus, uncertainty
propagation in criticality measures is related to the funda-
mental problem of collision probability estimation.
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One major challenge when calculating the probability of
a collision is that multivariate probability density functions
(pdf) have to be integrated over the uncertain future paths
of ego vehicle and object. Thus, Monte-Carlo methods have
been proposed in [5]–[9]. Another approach [10] is to
reformulate a collision event using a scalar distance function.

Analytical solutions on the other hand are shown in [11]–
[13]. In these works, predicted trajectories are either assumed
certain or the process noise is taken into account using
recursive calculations for discrete-time models.

In order to evaluate the influence of sensor noise on
criticality measures, Monte-Carlo simulations have been em-
ployed in [14]–[16]. Propagation of measurement noise in the
time to collision measure is further performed with Monte-
Carlo methods in [10] and the Unscented Transformation
in [17]. Taking both measurement and process noise into
account, probabilistic decision making with Monte-Carlo
stochastic integration is proposed in [18], [19].

An example of a rigorous analytical propagation is [12]
where closed-form exact and approximate distributions of
the time to collision under measurement noise are presented.
However, an analytical solution under both measurement and
prediction uncertainty has not yet been discussed. Instead of
modelling distributions of criticality measures, [20] exam-
ines the worst-case performance of an intervention decision
strategy under bounded measurement and prediction errors.

C. Organisation of the paper

In order to structure the problem, a typical signal pro-
cessing chain of an Advanced Driver Assistance System is
presented in Sec. II. Subsequently, theoretical background
on kinematic vehicle motion models and uncertainty prop-
agation in these systems is discussed. The main results
are derived in Sec. III. An efficient calculation of collision
probabilities and novel analytical error propagation in criti-
cality measures are introduced. Simulation results in Sec. IV
illustrate these findings on the example two common risk
metrics. All results are summarised in Sec. V.

II. THEORETICAL BACKGROUND

A. Overview

The system design assumed in this work is shown in
Fig. 1. Following the perception layer, a state estimator,
e.g. a Kalman filter, is assumed for providing a Gaussian
estimate of the relative dynamic state x ∼ N (x̂,Σx). The
kinematic state vector consists of position and velocity and
is denoted as x :=

[
x y vx vy

]>
. Based on these

estimates, model-based criticality assessment comprises the
two steps of prediction and risk assessment.
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Fig. 1. Signal processing chain and outline of uncertainty modelling approach.

In this work, a ground-fixed Cartesian coordinate system
and a Cartesian coordinate system which moves with the ego
vehicle are used. The absolute state variables corresponding
to ego vehicle or object are denoted as xE and xO respec-
tively. Whereas x corresponds to the object state as seen
from the ego vehicle.

B. Uncertainty propagation in kinematic motion models

At first, the foundations on uncertainty propagation in non-
linear dynamic systems are reviewed. Subsequently, these are
applied to two exemplary motion models used in this work.

Given an initial state estimate x (0) ∼ N (x̂ (0) ,Σx (0)),
the goal is to predict its distribution at a future time instance
T where the prediction model is given as a system of n
non-linear, stochastic differential equations:

ẋ (t) = f (x (t)) + Lw (t) . (1)

Here, stochastic deviations from an ideal deterministic pre-
diction are modelled as additive white Gaussian process
noise w (t) ∈ RnS with time-invariant power spectral density
E
[
w (t) w (t′)

>
]

= Sδ (t− t′) and L ∈ Rn×nS .
A Gaussian estimate N (x̂ (T ) ,Σx (T )) of the predicted

state can be derived by linearisation. For non-linear systems,
this is a first-order approximation of the non-Gaussian den-
sity [21]. A more accurate propagation is achieved, e.g. with
a Gaussian mixture model [22]. The Jacobian of f (x (t))
at x (t) is denoted as F (t) := ∇x(t)f (x (t)). Then, the
following covariance propagation is obtained [23]:

x̂ (T ) =Φ (T, 0) x̂ (0) , (2a)

Σx (T ) =Φ (T, 0) Σx (0) Φ> (T, 0) + Q (T, 0) , (2b)

with Q (t, t0) =

∫ t

t0

Φ (t, τ) LSL>Φ> (t, τ) dτ, (2c)

Φ (t, t0) = exp

(
t

∫
t0

F (τ) dτ

)
. (2d)

It may be impossible to find closed-form expressions for the
transition matrix Φ (t, t0) in general. Fortunately, some of
the most commonly used motion models in ADAS, such as
the linear Constant Velocity (CV) or Constant Acceleration
(CA) as well as the non-linear Constant Turn Rate and
Acceleration (CTRA) models make remarkable exceptions.

1) Constant Velocity: The model describes a purely trans-
lational, non-accelerated motion in x and y direction. This
simplified view is useful when an object is tracked without
explicit knowledge of its orientation. The process noise w (t)
is defined by its spectral density S = diag

([
Sx Sy

])
:

ẋ (t)
ẏ (t)
v̇x (t)
v̇y (t)

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



x (t)
y (t)
vx (t)
vy (t)

+


0 0
0 0
1 0
0 1

[wx (t)
wy (t)

]
.

(3)

It is easily shown that Φ (t, t0) = I4×4 +F (t− t0) and thus
a closed-form solution to (2) is obtained with

Q (T, 0) =


1
3T

3Sx 0 1
2T

2Sx 0
0 1

3T
3Sy 0 1

2T
2Sy

1
2T

2Sx 0 TSx 0
0 1

2T
2Sy 0 TSy

 . (4)

2) Constant Turn Rate and Acceleration: A curvilinear
trajectory is modelled by taking into account rotational and
translational motion with constant acceleration a and yaw
rate ω. The differential equations with process noise strength
S = diag

([
Sa Sω

])
are given as:

ẋ (t)
ẏ (t)
v̇ (t)

θ̇ (t)
ȧ (t)
ω̇ (t)

 =


v (t) cos (θ (t))
v (t) sin (θ (t))

a (t)
ω (t)

0
0

+


0 0
0 0
0 0
0 0
1 0
0 1


[
wa (t)
wω (t)

]
. (5)

Here, velocity and acceleration are conveniently modelled
in polar coordinates. This state vector xp is converted to
Cartesian coordinates x using the transformation πc

p (·):

πc
p (xp) :=

[
x y v cos (θ) v sin (θ)

]>
. (6)

Despite its non-linearity, (2) can be analytically solved for
the CTRA model [24]. This is because F (t) is a strict upper
diagonal matrix, which also holds for its integral. Thus, a
closed-form solution for Φ (t, t0) = I6×6 +

∫ t
t0

F (τ) dτ and
finally the state covariance Σp

x (T ) can be obtained.
In order to obtain the covariance for the state with

Cartesian velocity vx, vy , the Jacobian ∇xp
πc

p (x) of (6) is

2



calculated. Then, Σx (T ) =
(
∇xp

πc
p

)
·Σp

x (T ) ·
(
∇xp

πc
p

)>
yields the final result.

Note that the uncertainty propagation (2) can be evaluated
for arbitrary continuous time T . An alternative approach is
pursued in [5], [8], where the prediction step of an Extended
Kalman Filter is iteratively calculated for a discrete-time
version of the motion model. Therefore, only a recursive
solution at the discrete time steps is available.

A concluding remark on the chosen uncertainty model in
(1): While human drivers can predict and assess situations
based on a multitude of cues (e.g., road layout, context,
interaction), current threat assessment algorithms employ
range information only. When additional high-level semantic
information is available, one could extend the unimodal
process noise w (t) to a situation-dependent multimodal
distribution, in order to represent alternative manoeuvres
(e.g. driving straight or turning). Overall, this will narrow
the likely trajectories and thus lead to higher certainty in the
risk assessment.

Nevertheless, one has to be cautious about the level of
rationalism that is assumed in the prediction. In fact, critical
situations are often caused by a lack of mutual awareness
and interaction between traffic participants [9]. Hence, it
is assumed that ego vehicle and object are statistically
independent in this work.

Because manoeuvre changes are not taken into consider-
ation here, the validity of the model is certainly restricted
to a short prediction horizon only. This is however not a
severe limitation, as we consider situations with a high risk
of an imminent collision and hence predictions for up to
approximately 3 s only. It is the scope of future works to
investigate the model’s validity based on empirical data.

III. UNCERTAINTY IN CRITICALITY MEASURES

At first, uncertainty transformation to relative coordinates,
which are used in the criticality assessment, is discussed in
Sec. III-A. Then, a method to derive the probability distribu-
tion pκ (κ) of a criticality measure κ from measurement and
prediction uncertainty is presented in Sec. III-B and III-C.
Finally, a concluding summary is given in Sec. III-D.

A. State prediction uncertainty for relative motion

In the previous section, uncertainty propagation has been
considered for motion models in a common ground-fixed
coordinate system. For the application of tracking and sit-
uation interpretation it is however beneficial to describe an
object’s motion in Cartesian coordinates which are centred
and aligned to the ego vehicle’s pose. These relative coor-
dinates arise naturally when sensory information measured
from the moving ego vehicle is processed.

Generally, transforming from absolute to relative coordi-
nates is performed by a linear transformation:

x := M
(
xE
) (

xO − xE
)
. (7)

If x comprises Cartesian position and velocity, θE denotes
the heading of the ego vehicle and R

(
θE
)

is a rotation

matrix, then M
(
xE
)

is defined as [25]:

M
(
θE, ωE

)
=

[
R
(
θE
)

0

Ṙ
(
θE, ωE

)
R
(
θE
)] . (8)

However, attempting to propagate uncertainty directly in
these relative coordinates poses two challenges:

1) Depending on the two involved motion models, finding
the differential equations of the relative motion is
difficult and potentially requires approximations [25].1

Moreover, the challenge of calculating the uncertainty
propagation as in (2) for this model remains.

2) Process noise w (t) is a property of the individual
motion models and naturally defined in the frames
of ego vehicle and object respectively. For instance,
anisotropic noise is typically assumed in the longitudi-
nal and lateral motion to account for inhomogeneous
evasion capabilities. In a relative motion model, this
results in a variance dependent on time-varying quan-
tities such as the heading angle.

An approach to overcome these challenges for the design of a
tracking filter is pursued in [26]: The relative object dynamic
state, ego vehicle speed and yaw-rate are concatenated in
an extended state vector. Thus, the process noise covariance
of the extended state consists of separate block-matrices for
object and ego vehicle. However, an explicit dynamic model
for the relative motion is still required.

Here, it is proposed to first propagate uncertainties in ab-
solute coordinates using (2) and then transform the resulting
covariances ΣE

x ,Σ
O
x to Σx in the relative frame through (7).

When M
(
θE, ωE

)
is known without uncertainty, the prop-

agation follows immediately:

Σx = M
(
θE, ωE

)
·
(
ΣO

x + ΣE
x

)
·M> (θE, ωE

)
. (9)

In practice, rotating by an uncertain heading angle θE and
yaw rate ωE introduces additional errors. Modelling the
variance in the components of x can be pursued by rewriting
(7) row-wise as a quadratic form.

To this end, the i-th row m>i of M
(
θE, ωE

)
is firstly

rewritten as a linear mapping mi = Ãiq
(
θE, ωE

)
, where

Ãi := ∇qmi and q
(
θE, ωE

)
are the trigonometric ex-

pressions which (8) consists of. Moreover, the abbreviations
ξ := xO − xE and Σξ := ΣO

x + ΣE
x are introduced. Hence:

xi =
1

2

[
ξ> q>

(
θE, ωE

)]︸ ︷︷ ︸
=:y>

[
04×4 Ãi

Ã
>
i 04×4

]
︸ ︷︷ ︸

=:Ai

[
ξ

q
(
θE, ωE

)]︸ ︷︷ ︸
=:y

.

Then, results on moments of quadratic forms provide [27]:

Σx,ij = cov
(
y>Aiy,y

>Ajy
)

= tr
(
Σmi,mjΣξ

)
+ ξ>Σmi,mjξ + m>i Σξmj ,

Σmi,mj
= cov (mi,mj) = ∇θmiΣθ (∇θmj)

>
,

θ :=
[
θE ωE

]>
.

(10)
1In tracking applications, the exact influence of the ego vehicle’s rotation

is often approximated in the form of pseudo acceleration inputs [25].
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B. Probability of a collision

The risk assessment measures considered in this work are
defined conditionally that a collision is predicted to take
place if no further action is taken. It is the objective of these
risk metrics κ to quantify the remaining evasive actions or
reaction time left. If no collision is predicted, e.g., either
because two vehicles are driving on different lanes or their
relative velocity is positive, the criticality metric is set to a
boundary value which defines a least critical situation.2

In order to model the uncertainty in a criticality measure,
the probability of taking on a boundary value is analysed
first. Therefore, the collision probability over a future trajec-
tory needs to be calculated given an uncertainty model for
the predicted trajectory from Sec. III-A.

At a point in time τ where the predictions are given
as the joint probability density pxE,xO

(
xE (τ) ,xO (τ)

)
, the

instantaneous probability of a collision event C(τ) is [6]

P
(
C(τ)

)
=

∫
xO

∫
xE

IC
(
xE,xO

)
pxE,xO

(
xE,xO

)
dxEdxO

(11)
where IC

(
xE,xO

)
denotes a collision indicator function

which is based on the object geometries S
(
xE
)
, S
(
xE
)
:

IC
(
xE,xO

)
=

{
1 S

(
xE
)
∩ S

(
xO
)
6= ∅

0 S
(
xE
)
∩ S

(
xO
)

= ∅
. (12)

The complexity of this problem is due to:
• It is required to integrate multivariate probability func-

tions over the two contours.
• Only a single time instant is considered in (11). Thus, a

statement on the overall collision probability P
(
C(0,T )

)
within a time interval t ∈ [0, T ] is further to be derived.

Monte-Carlo approaches are presented in [5]–[10] with dif-
ferent means taken to reduce the computational burden. For
example, the assumption of independent states and combi-
nation of both contours to a single integration volume in
relative coordinates can be leveraged [7].

Analytical expressions for Gaussian state distributions are
derived in [8], [11], [12]. In [8], the evolution of the instan-
taneous probability of a collision over time is interpreted as
a criticality measure. It is suggested in [11] to remove the
time-dependence by calculating the maximum value over all
time steps. A rigorous probabilistic derivation is presented
in [12]. Here, the motion is separated in longitudinal and
lateral direction. Moreover, simple rectangular shapes are
assumed in car following scenarios where the heading angle
is neglected. This structures the problem to determine the
probability distributions of

1) the point in time ttc (time to collision) where both
vehicles share the same longitudinal position x and

2) the relative lateral distance y at this time instant in
comparison to a critical corridor of width w.

In a first step, the distribution pttc (t) is determined. For
correlated Gaussian errors in the relative longitudinal dy-
namics x (0) , vx (0), the exact distribution and a Gaussian

2Without loss of generality, this boundary value is chosen as κ = 0 here.

approximation are derived in [12]. The latter one will be
extended in the following Sec. III-C to further account for
uncertain trajectories.

Secondly, the probability of a collision within the time
interval t ∈ [0, T ] is determined from the distribution of the
relative lateral position y (τ) conditional on τ = ttc. In the
case of independent motion in x and y, this reads [12]:

P
(
C(0,T )

)
=

∫ T

0

∫ w/2

−w/2
py (y (τ) |τ ) pttc (τ) dτdy . (13)

A simplification is proposed here by neglecting the uncer-
tainty of ttc and replacing pttc (t) with a dirac function:

pttc (τ) = δ (τ − µttc) . (14)

The reasoning is that the time-dependent py (y (τ)) can
be approximated by its average distribution py (y (µttc)) as
long as pttc (τ) is reasonably narrow. Certainly, correlation
between longitudinal and lateral motion would also affect
this assumption. This simplifies (13) to:

P
(
C(0,T )

)
=

∫ w/2

−w/2
py (y (µttc)) dy . (15)

Therefore, instead of numerically integrating a non-Gaussian
probability density in (13), it is only required to evaluate the
cumulative distribution function of a normal distribution in
(15), e.g. with a lookup table.

C. Propagation from uncertain state predictions to criticality

Having addressed the probability of a collision, this section
studies the uncertainty in commonly used risk metrics.

1) Problem formulation: Risk metrics are based on the
current estimate of the (relative) motion state x (0) and
the objective is to distinguish critical from normal driving
situations. These metrics κ are usually designed as scalar
functions ψ (·):

κ = ψ (x (0)) . (16)

Decision making on a system intervention can then be based
on one or multiple [3] thresholds.

Uncertainty in κ is obviously induced by errors in the esti-
mated x (0). The variance Σκ can be analytically quantified
via Gaussian error propagation, i.e. linearisation of ψ (·):

Σκ =
(
∇x(0)ψ (x (0))

)
·Σx (0) ·

(
∇x(0)ψ (x (0))

)>
. (17)

However, a second source of uncertainty are deviations
between the true future evolution of a situation and the
prediction which is implicitly assumed in ψ (·). A novel
methodology for Gaussian error propagation with consider-
ation of prediction uncertainty is proposed in the following.

2) Methodology: Firstly, an equivalent formulation of
the criticality measure (16) as an implicit function of the
predicted state x (T ) is introduced. Secondly, a result on
error propagation in implicit functions [28] is used. Finally,
the results from Sec. III-A on uncertainty in the prediction
x (T ) are inserted which yields the propagation to Σκ.
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As a first step towards the reformulated criticality, the (lin-
ear) state prediction model is abbreviated as λ (x (0) , u, t):

λ (x (0) , u, t) := x (t) = Φ (t, 0) x (0) + bu . (18)

Here, u denotes an (optional) system input, for example a
deceleration applied by the driver. As has been explained in
[11], a model-based criticality measure can now be defined
as condition on a function φ (·) of the predicted state x (T ):

φ (x (T )) = 0 . (19)

An explicit criticality measure κ = ψ (x (0)) is then derived
by inserting the model (18) and solving for the combination
α =

[
T u

]>
of prediction time and the required input in

order to fulfil the condition (19):

α :=

[
T
κ

]
= sol(t,u) {φ (x (t)) = 0} (20)

= sol(t,u) {φ (λ (x (0) , u, t)) = 0} . (21)

For instance, one may define the condition that a collision is
just avoided by a braking deceleration u. That is, at time T
where the first contact with the object (x (T ) = 0) occurs,
the relative velocity should vanish (vx (T ) = 0). Solving for
u gives the minimum required deceleration.

Thanks to this implicit definition it is possible to calculate
the variation of the solution α :=

[
T κ

]>
when x (T ) is

varied. That is, both uncertainty on the estimate of x (0) as
well as in the prediction model can be taken into account.
The covariance matrix Σα follows by first-order error prop-
agation and the lower right element contains Var (κ):

Σα =

[
ΣT ΣTκ
ΣκT Σκ

]
=
(
∇x(T )α

)
·Σx (T ) ·

(
∇x(T )α

)>
.

(22)
In order to find the required gradient ∇x(T )α of (20) the
implicit function theorem can be used [28]:

∇x(T )α =−
[
∇(t,u)φ (λ (x (0) , u, t))

]−1∇x(T )φ (x (T )) .
(23)

Finally, we are now in a position to insert result (10) on the
prediction uncertainty Σx (T ) into (22). In the following, this
general result will be illustrated for two criticality measures.

3) Time to collision: A particularly simple metric, which
forms the basis for more advanced time-based metrics, such
as the time to react [3], is the time to collision ttc:

ttc = − x (0)

vx (0)
. (24)

This measure is based on the CV3 motion model (3):

λ (x (0) , t) = x (t) =

[
I2×2 tI2×2
02×2 I2×2

]
x (0) . (25)

A one-dimensional condition on the predicted state φ (x (T ))
defines a collision event in longitudinal direction:

ttc = sol(t)
{[

1 0 0 0
]
· x (t) = 0

}
. (26)

3A more sophisticated form based on a Constant Acceleration model is
given in [11]. On the one hand, incorporating a more precise model with
higher moments of the motion reduces the prediction uncertainty. On the
other hand, it is required to estimate additional dynamic quantities.

The gradient is calculated according to (23):

∇x(T )ttc = −
[

d

dt
(x (0) + vx (0) t)

]−1
· ∇xx

= −
[

1
vx(0)

0 0 0
]
. (27)

Now, an assumption on the predicted state uncertainty
Σx (T ) has to be made. Basically, the method is not limited
to a specific approach. As it has been argued, treating ego
vehicle and object separately first can lead to better models.

A special case is to consider the same prediction model
λ (x (0) , t) as employed in the derivation of the criticality
measure. Inserting the predicted covariance Σx (T ) for the
linear CV model as derived in Sec. II-B yields an interesting
result in closed form:

Σttc =
(
∇x(T )ttc

)
·Σx (T ) ·

(
∇x(T )ttc

)>
(28)

=
(
∇x(0)ttc

)
·Σx (0) ·

(
∇x(0)ttc

)> − x3 (0)

3v5x (0)
Sx

Here, ∇x(0)ttc denotes the gradient of (24) with respect to
x (0). Therefore, the classical error propagation result (17)
is recovered with an additional term that accounts for the
prediction uncertainty.

4) Brake Threat Number: While the time to collision is a
popular and easily interpretable measure, it is only implicitly
related to a driver’s capabilities to avoid a collision.

A second group of criticality measures assesses the re-
quired future driver inputs to avoid a collision. These have
a clear physical interpretation, e.g. deceleration or yaw rate.
Usually, the physical quantities are normalised (e.g. to the
maximum possible value each) which yields comparable
criticality measures for different evasive actions.

Here, the basic interpretation of the required longitudinal
acceleration areq, which is also known as Brake Threat
Number (BTN) [4], [11] after normalisation, will be analysed:

areq = − v
2
x (0)

2x (0)
. (29)

For the motion dynamics, a CV model with longitudinal ego-
vehicle acceleration input a is assumed:

λ (x (0) , a, t) = x (t) =

[
I2×2 tI2×2
02×2 I2×2

]
x (0)− ba ,

b =
[
1/2t2 0 t 0

]>
.

(30)

Condition (19) on the final state is defined as x (T ) = 0,
vx (T ) = 0 and thus [11]:[

T
areq

]
= sol(t,a)

{[
1 0 0 0
0 0 1 0

]
· x (t) = 0

}
. (31)

Solving (31) with (30) yields areq as in (29) and T =
−2x (0)/vx (0). Note that the prediction time is twice the
ttc here which increases the influence of the process noise.

The gradient (23) evaluated at the expected values is:

∇x(T )areq =
[
v2x(0)
2x(0) 0 0 0

]
. (32)

5



Employing Σx (T ) for the CV model (30) yields the follow-
ing closed-form result:

Σareq =
(
∇x(0)areq

)
·Σx (0) ·

(
∇x(0)areq

)> − 2vx (0)

3x (0)
Sx.

(33)
Here, the first term is the classical error propagation (17).

D. Summary of main results

This section provided the main theoretical contributions on
uncertainty propagation in criticality measures. As criticality
metrics are usually defined as functions of relative dynamic
states, a rigorous analysis of error propagation in relative
dynamics is performed in Sec. III-A. The idea is to separately
model the process noise of ego vehicle and object first and
propagate the uncertainty from absolute to relative motion.

Uncertainty propagation in the criticality measure κ is
split in two aspects presented in Sec. III-B and Sec. III-
C. At first, the probability 1 − P

(
C(0,T )

)
of taking on a

boundary value which corresponds to the no collision case
is analysed. Secondly, the distribution N (µκ,Σκ) of the risk
metric conditional on a predicted collision event is modelled.
Here, a novel method to analytically account for uncertain
prediction models with Gaussian process noise is introduced.

In conclusion, the criticality measure is distributed as a
mixture of two components:

pκ (κ) =
(
1− P

(
C(0,T )

))
·δ (κ)+P

(
C(0,T )

)
·N (µκ,Σκ) .

(34)

IV. SIMULATION

The focus of this work is on how state estimation and
prediction uncertainties propagate to criticality measures. In
the following, Monte-Carlo simulations are used to verify
the analytic results, given an assumed model of these uncer-
tainties. Validating statistical models for specific sensor (e.g.
stereo vision [29]) and prediction errors is thus out of this
work’s scope.

A. Setup and parameter values

All simulations are based on the configuration shown in
Fig. 2. The ego vehicle is moving in x-direction with constant
velocity according to the CTRA model (5), towards an object
which is crossing into the driving corridor (CV model (3)).
Using an environment sensor the object state is measured and
the distribution of two criticality measures evaluated. Initial
values and the process noise parameters are given in table I.

B. Uncertainty in predicted states

At first, Nsample = 100 trajectory predictions of the ego
vehicle and object are calculated. The analytical propagation
(2) is solved using the respective models and shown in form
of 90% confidence ellipses. Evaluated at six different time
steps, the results in Fig. 3(a) show good correspondence.

Secondly, the resulting relative trajectories as seen from
the ego vehicle are visualised in Fig. 3(b). The propagation
model from Sec. III-A is shown with (10) and without (9)
considering the uncertainty in the rotation angle. Neglecting
the heading errors leads to too narrow confidence ellipses,

Fig. 2. Illustration of the simulation setup.

TABLE I
SIMULATION PARAMETERS

Variable Value

Ego vehicle:
Initial state

xE (0): x (0) = 0, y (0) = 0, v (0) =
13.89m/s, θ (0) = 0, a (0) = 0, ω (0) = 0

Initial uncertainty ΣE
x (0) = 06×6

Process noise SE
a =

(
0.31m/s3

)2
s−1,

SE
ω =

(
1.28 ◦/s2

)2
s−1

Object:
Initial state

xO (0): x (0) = 80m, y (0) = −5.75m,
vx (0) = 0, vy (0) = 1m/s

Initial uncertainty ΣO
x (0) = diag [ 0.5m 0.5m 0.2m/s 0.2m/s ]2

Process noise SO
x = SO

y =
(
0.5m/s2

)2
s−1

Critical corridor w = 2m

Normalisation BTN =
areq

−6m/s2

most notable at far distances. In these cases, even small angle
errors lead to high lateral deviations.

C. Probability of a collision

Simulated trajectories are now repeatedly calculated start-
ing from different time steps t0. That is, the prediction is
started from the mean values xE (t0), xO (t0) with uncer-
tainties Σx (t0) = Σx (0).4 Collision probabilities over the
relative distance x (t0) are shown in (4). Smaller distances
mean less time and therefore less chances for evasive actions
which results in a higher collision probability.

Three models are compared to the Monte-Carlo results:
Firstly, the complex model (13) by [12] is numerically
evaluated. Here, the Gaussian propagation with process noise
uncertainty from (28) is inserted for the required density

4Assuming a constant initial uncertainty on x (t0) does not account for
the typical behaviour of a tracking filter where the estimates improve over
time. This time-dependence of Σx (t0) is neglected here for clarity.
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(a) Absolute positions. The uncertainty propagation (2) is calculated for
the CTRA model (5) (ego vehicle) and the CV model (3) (object).
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(b) Relative positions. Modelled uncertainty ellipses are calculated with
and without considering the uncertainty in heading θE and yaw rate ωE.

Fig. 3. Uncertainty in predicted position: Monte-Carlo simulation results
(Nsample = 102 iterations) and analytical model (uncertainty ellipses
corresponding to the 90%-environment).

pttc (t) of the time to collision. Secondly, the simplified
model (15) which does not consider uncertainty in the
longitudinal direction is shown and almost identical results
are achieved.

Finally, the original model from [12] is calculated where
a non-Gaussian distribution for pttc (t) is employed in (13)
but process noise is not taken into account. Much higher
collision probabilities are obtained because trajectories are
falsely assumed certain. Especially for high initial distances,
i.e. long prediction times, the process noise influence is
clearly visible over the state estimation uncertainty.

D. Uncertainty in criticality measures

Similar to the previous section, trajectories are now sim-
ulated from three different times t0 on. For each trajectory,
the true values of two criticality measures are evaluated: The
true ttc (24) follows from the simulated time step where ego
vehicle and object collide for the first time. Ground truth
values for the normalised required longitudinal acceleration
from (29) are calculated from the true relative velocity at the
time of collision. Hence, the true areq is given as the true
velocity difference divided by twice the true ttc.

The distributions (normalised frequency and empirical
CDF) of these criticality measures are shown in Fig. 5. For

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

x (t0) [m]

P
c
o
ll

Simulation
Model (13)
Simplified model (15)
w/o pred. uncertainy

Fig. 4. Collision probability over initial position x (0). Monte-Carlo sim-
ulation results (Nsample = 104 iterations) are compared to the model (13)
by [12] extended with prediction uncertainty and the simplified expression
from (15). For comparison, the original model [12] which only considers
uncertainty in the estimated initial values is shown.

comparison, the models obtained in Sec. III-C are visualised
and a high correspondence is achieved.

In order to quantitatively evaluate the goodness of fit,
the Kolmogorov-Smirnov statistic is calculated. This metric
is defined as the maximum difference between two CDFs.
At first, a non-parametric reference distribution is sampled
from Nref = 105 iterations. A naı̈ve sampling approach
(Nsample = 102 . . . 104) is performed for comparison to the
analytical model. The deviations are then calculated between
the cumulative distribution of the reference on the one hand
and the distributions of the analytical model or the sampling
approach on the other hand.

The results reveal that it requires approximately Nsample =
104 iterations in order to yield the same accuracy as the
analytical approach. Although there are certainly more so-
phisticated approaches for efficient sampling, e.g. [5], [6],
these promising results encourage further extensions.

V. CONCLUSION

This paper has addressed uncertainty modelling for criti-
cality assessment in driver assistance systems. First, an ana-
lytical method for collision probability calculation from [12]
is extended to state estimation and prediction uncertainties.
Moreover, a simplified approximation has been proposed and
evaluated in Monte-Carlo simulations.

Secondly, a method for analytical uncertainty propagation
in criticality measures under consideration of measurement
and process noise is introduced. The solution is evaluated
in simulations of two criticality measures. Furthermore, the
number of iterations in a naı̈ve numerical sampling approach
is analysed that is required to achieve a comparably accurate
distribution model as the analytical result.

Given that the current work [9] proposes to generalise
classical criticality measures to probabilistic metrics, the
analytical results could prove very useful to determine
closed-form expressions. A second possible extension of this
contribution is to consider multi-modal state predictions in
order to describe different manoeuvres.
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Fig. 5. Uncertainty model (red) for criticality measures compared to simulated error distribution (blue). Nsample = 105 trajectories have been sampled
for each initial position. Analysing each trajectory for the occurrence of a collision leads to the sample distribution of the criticality measures. The model
(34) matches the simulated results. Higher initial distances lead to longer prediction times T and therefore a lower collision probability P

(
C(0,T )

)
. This

causes higher peaks at the boundary value κ = 0.
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