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Abstract— Recognising the intended manoeuvres of other
traffic participants is a crucial task for situation interpretation
in driver assistance and autonomous driving. While many works
propose algorithms for (computationally feasible) inference,
much less attention is paid to finding analytic upper perfor-
mance bounds for these problems.

This work studies the statistical properties of the optimal
detector in a binary change detection problem, i.e. the Gen-
eralised Likelihood Ratio test. With analytic models of the
best attainable receiver operating characteristic, the influence
of system design parameters can be investigated without the
need for empirical evaluation. Moreover, these bounds can be
used to derive objective performance metrics.

I. INTRODUCTION

A. Motivation

Advanced Driver assistance systems (ADAS) strive to
support the driver with interventions in the vehicle controls
(e.g. performing an automatic emergency brake before an
imminent collision). Hence, these systems utilise predictions
in order to be able to assess the future evolution of a traffic
situation [1], [2]. To this end, kinematic motion models
are used where the initial values of the state variables are
estimated by a tracking filter.

However, vehicle trajectories result from driver intentions
on a semantic level, i.e. performing a specific manoeuvre to
safely reach a certain navigation goal. A viable approach
to achieve accurate predictions for longer time spans is
thus to recognise the discrete driver intention first and
predict trajectories that correspond to the relevant manoeuvre
only [3]. This concept is visualised in Fig. 1. Methods
for driving situation estimation include e.g., algorithms for
change detection [4], multiple model Kalman filter [5], and
probabilistic inference in Bayesian Networks [6], Hidden
Markov Models [7] or Dynamic Bayesian Networks [8].

In order to quantify the overall uncertainty in the predicted
trajectory, one needs to model inaccuracies in kinematic mo-
tion models as well as uncertainty in the intention detection,
i.e the receiver operating characteristic (ROC). Often, only
upper bounds on the attainable performance can be analyti-
cally calculated. These can be useful as an absolute reference
in order to objectively compare the performance of different
algorithms. While the Cramér-Rao lower bound (CRLB) [9],
[10] provides a lower bound on the error covariance for the
estimation of continuous state variables, no similarly simple
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analytic result is available for the recognition of discrete
intentions.

To study this problem, it is formulated as the detection of
changes in a discrete-time linear non-Gaussian system [4].
Here, the Generalised Likelihood Ratio (GLR) test is known
to be optimal in special cases [11] and asymptotically optimal
in general [12]. The statistics of this test therefore give an
idea of a general upper performance bound.

B. Background and previous results

A comprehensive overview of change detection in dynamic
systems is given in [11]. The focus of this work is on
additive changes in linear systems. One approach suitable
in the presence of Gaussian process and measurement noise
is to form residuals from the Kalman filter innovations [13].
This recursive algorithm is a GLR test and the test statistics
follow from the Kalman filter covariance propagation.

However, many real applications are characterised by
non-Gaussian errors. For example, [14] proposes a bimodal
Gaussian distribution to model an automotive radar sensor.
In these cases, a closed-form of the optimal detector usually
does not exist.

In order to find an upper bound on the attainable perfor-
mance, the test statistics of a GLR test over a sliding window
of data is considered in [15], [16]. The two relevant factors
which influence the detector performance are the length L
of the data window and the noise parameters.

It is of interest to determine the minimum window length
in order to achieve a desired probability of detection PD at a
maximum tolerable false alarm probability PFA. Moreover,
the potential improvement that can be expected from a
detector which is based on the full noise information instead
of a Gaussian approximation is to be analysed. This questions
can be addressed using the notion of intrinsic accuracy (IA)
[17]. The main advantage of a Gaussian approximation on
the other hand is that closed-form solutions are available and
thus computationally challenging methods, e.g. the particle
filter, can be avoided.

C. Organisation of the paper

At first, preliminary background on the models considered
in this work, estimation theory and the GLR test are reviewed
in Sec. II. Subsequently, the GLR test statistic is derived.
Previous results in block matrix notation are first introduced
in Sec. III-A and then expanded on with the novel recursive
model in Sec. III-B which is further discussed in Sec. III-
C. These theoretical findings are applied to a simulation
example in Sec. IV. The paper concludes with a summary
in Sec. V.
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Fig. 1. Exemplary signal processing chain of a driver assistance system. From the perceptions of the environment sensor, the dynamic state as well as
intentions of other traffic participants are estimated. Prediction, risk assessment and planning of future actions are then based on dynamic prediction models
which correspond to the detected intentions.

II. PRELIMINARIES

A. Model representations
Linear dynamic systems in state space form are considered

in this work. The system state is denoted xk ∈ Rn, yk ∈ Rm
is the measurement output, uk a deterministic known input
and fk a deterministic, but unknown additive input (fault)1:

xk+1 = Akxk + Bu
kuk + Bf

kfk + Bw
k wk (1a)

yk = Ckxk + Du
kuk + Df

kfk + vk . (1b)

The stochastic inputs wk and vk denote white, independent
process and measurement noise, respectively.

In order to make the detection of unconstant fk feasible,
it is assumed that the time-dependence can be modelled
as a linear parametrisation. The fault profile is thus given
by known, time-dependent basis functions Fk and a ν-
dimensional, time-invariant coefficient vector θ ∈ Rν as
fk = Fkθ [15]. How to describe a fault signal in this way
will be illustrated for an application example in Sec. IV.
Hence, Bf

k and Df
k in (1) are replaced by Bθ

k = Bf
kFk and

Dθ
k = Df

kFk.
For notational simplicity, the known input uk is neglected

in the following. Moreover, a time-invariant system model is
assumed and therefore time-dependence of system matrices
is only taken into account for the fault profile Fk.

Multiple measurements are integrated in the change de-
tection approach. Given an initial state xk−L+1, the stacked
measurements YL =

[
y>k−L+1 . . . y>k

]>
read [11]:

YL = OLxk−L+1 + Hθ
LΘL + Hw

LWL + VL . (2)

In this notation, OL is the extended observability matrix

OL =
[
C>

(
CA

)>
. . .

(
CAL−1

)>]> , (3)

and the influence of the inputs i ∈ {θ,w} is given by

Hi
L =


Di
k−L+1 0 . . . 0

CBi
k−L+1 Di

k−L+2

. . .
...

...
. . . . . . 0

CAL−2Bi
k−L+1 CAL−3Bi

k−L+2 . . . Di
k

 .

(4)

1For consistency with the notation in [15], fk appears in both system (1a)
and measurement (1b) equation. However, for the considered application of
detecting changes in a target object’s manoeuvre, the observation is not
directly affected and hence Dk = 0.

The stacked vectors ΘL, WL and VL concatenate the
respective signals θ, w and v from times k − L+ 1, . . . , k.

B. Information and Accuracy

Two concepts known from estimation theory will be briefly
reviewed in the following. Firstly, the Fisher information
matrix Iy (θ) is used to quantify the information on a
parameter θ contained in the data y. It is defined as

Iy (θ) = −E
[
∇θ∇>θ ln p (y |θ )

]
(5)

where the probability density of the data conditional on
the parameter is denoted as p (y |θ ) [12]. One important
consequence is that the covariance of any unbiased estimate
θ̂ calculated from y is bounded below by the inverse Fisher
information matrix. This relation is known as the Cramér-
Rao lower bound (CRLB):2

Σθ̂ = cov
(
θ̂
)
� I−1

y (θ) . (6)

An estimator which reaches the CRLB is denoted efficient.
If an efficient unbiased estimator exists for a given problem,
this is the Maximum Likelihood estimator (MLE) [12].
Moreover, in a Gaussian setup, the MLE is a linear function
of the data and a closed form exists. The best linear unbiased
estimator (BLUE) and the MLE are identical then.

Secondly, the intrinsic accuracy (IA) characterises the
probability density p (e) of a zero mean noise process e [17]:

Ie = −E
[
∇e∇>e ln p (e)

]
. (7)

Here, we have the inequality

Σe = cov (e) � I−1
e (8)

which can be interpreted as the information about e con-
tained in its covariance. It is easily verified that for Gaussian
noise e ∼ N (0,Σe), (7) holds with equality. Thus, approxi-
mating e with a Gaussian of the same covariance is the least
informative choice.

The intuition here is that for a given estimation problem in
a non-Gaussian context, reaching the CRLB is only possible
with an MLE. However, there is potentially no closed form
solution and numerically expensive methods are required.
Employing a suboptimal BLUE for an approximately equiv-
alent Gaussian problem might therefore be a viable option.

2The notation A � B for matrices A,B denotes that the difference
A−B is positive semidefinite.
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C. Generalised Likelihood Ratio test

The objective is to optimally detect the presence of a
fault fk, parametrised by θ in the system (1) given L
measurements YL. We assume that θ0 = 0 corresponds to
the nominal system behaviour (hypothesis H0) and θ1 6= 0
under H1 is to be detected.3 This is a composite hypothesis
testing problem because the precise value of θ1 is not known
beforehand. In contrast, testing between two possible θ
(simple hypotheses) has a different solution and test statistics.

An intuitive approach is to estimate the change parameter
θ from measured data and compare it to 0, which is known as
the Wald test. Here, L� ν measurements YL are collected
and (2) is rewritten as a linear regression problem:

YL −OLxk−L+1 = Hθ
LΘL + Hw

LWL + VL . (9)

However, assuming precise knowledge of the initial value
xk−L+1 is unrealistic in practice.4 Thus, the estimate is
written as x̂k−L+1 = xk−L+1 + x̃k−L+1 where the intrinsic
accuracy of the zero mean estimation error x̃k−L+1 is
denoted as I x̃k−L+1

. Then:

YL −OLx̂k−L+1︸ ︷︷ ︸
=:RL

= ΦLθ + OLx̃k−L+1 + Hw
LWL + VL︸ ︷︷ ︸

=:EL

where ΦL =
[
φ1 . . . φL

]>
,

φ>l = Dθ
k−L+l +

∑l−1

j=1
CAl−j−1Bθ

k−L+j . (10)

Now, a maximum likelihood estimate θ̂ can be calculated
based on the measured residuals RL and the distribution of
the combined noise EL. It is asymptotically normal [12]:

θ̂
asymp.∼ N

(
θ,Σθ̂

)
, Σθ̂ =

(
Φ>LIELΦL

)−1

. (11)

In the special case of Gaussian noise, a closed form solution
is given by the Generalised Least Squares (GLS) estimator:5

θ̂ =
(
Φ>LΣ−1

EL
ΦL

)−1

Φ>LΣ−1
EL

RL (12a)

Σθ̂ =
(
Φ>LΣ−1

EL
ΦL

)−1

. (12b)

Alternatively, a recursive algorithm based on a Kalman filter
is proposed by WILLSKY and JONES [13].

The decision rule of the Wald test is then based on the
estimate’s Mahalanobis norm, employing a threshold γ [15]:

θ̂
>

Σ−1

θ̂
θ̂
H1

≷
H0

γ . (13)

3The case where θ0 6= 0 can be treated by attributing its influence to
the known deterministic system input uk and defining H1 as θ1 − θ0.

4One way to eliminate xk−L+1 is a parity space approach [15]. The
residual is projected in a space orthogonal to xk−L+1. A comparison
between this concept and the case where xk−L+1 is estimated, e.g. using
a Kalman filter, can be found in [18].

5Comparing the MLE and GLS estimates exemplifies the theory from
Sec. II-B. The GLS (12) solely considers the second moment ΣEL , which
is a complete description only for Gaussian noise. Due to the inequality
(8), i.e. ΣEL � I−1

EL
follows

(
ΦLΣ−1

EL
Φ>L
)−1 �

(
ΦLIELΦ>L

)−1

and thus the GLS estimate has a larger uncertainty than the MLE (11).

The parameter γ determines the tradeoff between the prob-
abilities of detection PD and false alarm PFA. In order to
make an informed decision it is thus beneficial to know the
statistical properties of θ̂.

An important property of the Wald test is that it asymptot-
ically possesses the same optimal statistics as the GLR test.
Thus, the GLR test statistics in a non-Gaussian context can
be derived using the previously reviewed concepts on esti-
mator performance, which will be studied in the following.

III. GLR TEST STATISTIC

The main contributions are developed in this section. At
first, the GLR test statistic is presented in Sec. III-A based
on the regression problem (10). The central issue with this
result which has been derived in [15] is that it allows no
intuitive insight on the influence of the data window length
L. Moreover, the (numerical) computation is demanding
because depending on L, a large matrix has to be inverted.
This motivates the derivation of a recursive solution in
Sec. III-B, which has to the best of the authors’ knowledge
not been shown before. Properties of this result are then
discussed in Sec. III-C.

A. Block matrix form

The Wald test is based on the unbiased, efficient MLE
and therefore the estimation covariance equals the CRLB (6).
Thus, the Mahalanobis norm of the estimate is asymptotically
χ2
ν-distributed with ν degrees of freedom

θ̂
>

Σ−1

θ̂
θ̂

asymp.∼

{
χ2
ν (λL) under H1

χ2
ν (0) under H0

(14a)

where the non-centrality parameter is

λL = (ΦLθ1)
> IEL (ΦLθ1) . (14b)

One can interpret (14b) as follows: λL is a measure on
how different the distributions of θ̂

>
Σ−1

θ̂
θ̂ under the two

hypotheses are. For the detector, finding the correct distinc-
tion becomes easier for higher λL because this separates the
non-central χ2

ν (λL)-distribution further from χ2
ν (0).

It is remarkable that the probability of a false alarm
PFA, i.e. the detection threshold γ is exceeded under H0,
remains independent of any system parameter. Therefore, a
system improvement only affects the true positive detection
performance, i.e. the non-centrality parameter of χ2

ν (λL).
The false alarm probability is thus only indirectly reduced
by choosing a higher threshold value γ which achieves the
same probability of detection PD but less false alarms.

Using (14), one can calculate a closed form for the detector
ROC curve, i.e. PD as function of PFA. Let the cumula-
tive distribution function (cdf) of the non-central χ2

ν (λL)-
distribution be denoted as Pχ2

ν(λL) (·) and the quantile func-
tion (inverse cdf) of the central χ2

ν-distribution as Qχ2
ν

(·):

PD = 1− Pχ2
ν(λL)

(
Qχ2

ν
(1− PFA)

)
. (15)
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Although all relevant information on the test statistic is
contained in the scalar λL, calculating this quantity requires
the inversion of a matrix with dimension L ·m×L ·m [15]:

IEL =
(
OLI−1

x̃k−L+1
O>L + Hw

LI
−1
WL

Hw
L
>

+ I−1
VL

)−1

.

(16)
Due to the assumption of white noise processes it follows
that I−1

WL
and I−1

VL
are block diagonal matrices with entries

I−1
w and I−1

v , respectively [15].
Still, the sum in (16) results in a dense matrix and finding

the inverse is not straightforward. It will be analysed in the
following section, how IEL+1

for L+1 measurements relates
to IEL . This leads to a recursive expression for λL+1 where
the increment λ∆

L+1 added by the (L+ 1)st measurement is
identified.

B. Recursive form

At first, (16) is reformulated in terms of the predicted
state x̂k−l+1, l = L, . . . 1. Stacking these state predictions
is denoted as X̂L =

[
x̂>k−L+1 . . . x̂>k

]>
. Consequently,

X̃L is the stacked state prediction error. Moreover, define
HL = IL ⊗ C as a block diagonal matrix of L times C
from the measurement model (1b). Hence:

HLX̃L = OLx̃k−L+1 + Hw
LWL . (17)

Then, (16) is rewritten using the matrix inversion lemma6:

IEL =
(
HLI−1

X̃L
H>L + I−1

VL

)−1

(18)

= IVL
− IVL

HL

(
IX̃L

+ H>LIVL
HL

)−1

H>LIVL
.

At first glance, this has not alleviated the problem.7 However,
I−1

VL
is block-diagonal due to the white noise assumption so

the inverse is readily available. Denote

ML :=
(
IX̃L

+ H>LIVL
HL

)−1

(19)

in (18) which comprises IX̃L
instead of its inverse. Thus, a

result on the structure of this matrix can be employed which
allows to find an expression for ML+1 as a function of ML.
To this end, ML+1 is partitioned:

ML+1 =

[ L · n n

L · n ML+1,11 ML+1,12

n ML+1,21 ML+1,22

]
. (20)

Lemma 1: A way to recursively calculate ML+1 is:

ML+1,11 = ML− (21a)[
ML,21

ML,22

]
·Υ
(
Υ + M−1

L,22

)−1

M−1
L,22 ·

[
ML,21 ML,22

]
ML+1,22 = (21b)(

D22 + C>IvC−D21

(
D11 + M−1

L,22

)−1

D12

)−1

ML+1,21 = M>
L+1,12 = ΓL+1 ·

[
ML,21 ML,22

]
(21c)

6
(
A + CBC>

)−1
= A−1−A−1C

(
B−1 + C>A−1C

)−1
C>A−1

7In fact it is now required to invert a matrix of dimension L · n× L · n
and typically we have more measurement than state variables, i.e. n ≥ m.

with the following abbreviations

Υ = D11 −D12

(
D22 + C>IvC

)−1

D21 , (22a)

ΓL+1 = (22b)

−
(
D22 + C>IvC

)−1

D21

(
Υ + M−1

L,22

)−1

M−1
L,22 ,

and8

D11 = A>
(
BwI−1

w Bw>
)−1

A, (22c)

D12 = D>21 = −A>
(
BwI−1

w Bw>
)−1

, (22d)

D22 =
(
BwI−1

w Bw>
)−1

. (22e)

The initial value for L = 1 is

M1 = M1,22 =
(
I x̃k−L+1

+ C>IvC
)−1

. (23a)

Proof: See Sec. VI-A.
Remark: All expressions in (21) only require to invert
matrices of size n×n. Also note that IX̃L

has been derived
for a predicted state x̂k|k−L+1 . Thus, D22 in (22e) does
not encompass a term related to measurement information
Iv. However, all occurrences of D22 in (21)-(22) are in
conjunction with C>IvC. Therefore, one could enhance
(22e) with this term and recover the identical expression as
for a filtered state estimate x̂k|k as shown in [9].

One remarkable aspect of (21) is that ML+1,11 consists of
ML and a second additive term. Still, matrices of growing
dimension are used in the calculation which motivates further
inspection of IEL in (18) and eventually λL in (14b).

A recursive formulation of λL+1 is then achieved where
all matrix operations are of dimension n × n. This result,
provided in theorem 1, is the main contribution of this work.

Theorem 1: The non-centrality parameter λL can be re-
cursively calculated as

λ1 =
(
φ>1 θ1

)> (
CI−1

x̃k−L+1
C> + I−1

v

)−1 (
φ>1 θ1

)
,

λL+1 = λL + λ∆
L+1 , L ≥ 1 (24)

where the increment λ∆
L+1 is given by the quadratic form

λ∆
L+1 = (a− b)

>
(
I−1

v −CML+1,22C
>
)−1

(a− b) ,

with (25a)

a = CΛ>L+1 , (25b)

b =
(
I−1

v −CML+1,22C
>
)
Iv

(
φ>L+1θ1

)
, (25c)

ΛL+1 =
(
ΛL +

(
φ>Lθ1

)>
IvCML,22

)
Γ>L+1 . (25d)

and Λ1 = 0ν×n, φ>L as defined in (10), ML,22 according to
(21b) and ΓL from (22b). Proof: See Sec. VI-B.
Remark: The only submatrix of ML which needs to be cal-
culated recursively is ML,22, all other relevant components
from (21) have been comprised in the recursion of ΛL.

8Here, it is assumed that the density p (xk+1 |xk ) of the system (1a) is
nonsingular and thus BwI−1

w Bw> is regular. This case is mainly treated
in [9], whereas further details on the singular case are provided in [10].
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C. Discussion of the recursive form

The recursion for the non-centrality parameter from the-
orem 1 provides the scalar increments λ∆

L+1 which increase
λ with each additional measurement taken into account.

Eventually, the implications of λ∆
L+1 on the detector

performance, i.e. the ROC are of interest. Therefore, the
evolution of the detection probability (15) with L is studied:

P∆
D ≈

d

dλ

(
1− Pχ2

ν(λ)

(
Qχ2

ν
(1− PFA)

))∣∣∣∣
λL

· λ∆
L+1 . (26)

However, as there is no closed-form expression to the cumu-
lative distribution function Pχ2

ν(λL) (·), we have to resort to
approximate expressions. At first, PD is therefore approxi-
mated in terms of elementary functions of λL. Secondly, the
derivative thereof yields a first-order approximation of the
amount of improvement P∆

D that can be expected from an
additional measurement (i.e. λ∆

L+1).
There are numerous approximations of the non-central χ2

ν-
distribution. We employ a compact variant by PATNAIK [19]:

Pχ2
ν(λ) (z) ≈ PN (µζ(λ),1) (ζ (λ)) (27)

with ζ (λ) =

√
2z

ν + λ

ν + 2λ
, µζ (λ) =

√
2

(ν + λ)
2

ν + 2λ
− 1. (28)

Thus, an approximate expression for (26) is obtained:

P∆
D ≈

1√
2π

exp

(
−1

2
(ζ (λL)− µζ (λL))

2

)
·
(
ζ ′ (λL)− µ′ζ (λL)

)
· λ∆

L+1 (29)

where µ′ζ (·) and ζ ′ (·) denote the derivatives of (28).
Instead of studying the ROC in terms of PD for a fixed

PFA, one could further analyse the area under the curve
(AUC) metric, that is the integral of ∫10 PD (PFA) dPFA.

IV. SIMULATION EXAMPLE

The previously studied asymptotic performance bound is
now compared to a GLR test in Monte-Carlo simulations.
It is expected, that the simulated GLR test reaches the
optimum ROC curve predicted by the model (15). While
previous works [15], [16] have analysed the optimal MLE in
contrast to an approximate BLUE in a non-Gaussian system,
emphasis is put on the detector window length L here.

A. Setup and parameter values

An application from the driver assistance domain is con-
sidered. While the example is not explicitly related to a
specific ADAS, the ambiguousness of the simulated situation
makes it a typical candidate for driver intention recognition.

The initial conditions of the situation are illustrated in
Fig. 2. Two vehicles are approaching a traffic light, e.g. at an
intersection, which has just switched from green to yellow.
Both vehicles are driving at 50 km/h with an initial distance
of 37 m to the intersection and it is assumed that the duration
for the yellow phase is 3 s.9 Therefore, the first vehicle may
pass the traffic light (legally) by keeping its current velocity.

9According to German legislation for inner-city traffic lights.

TABLE I
SIMULATION PARAMETERS

Variable Value

Sampling time T = 0.0675 s

Initial state xk−L+1 =
[
10m 0

]
Initial uncertainty I−1

x̃k−L+1
= diag

[
0.25m 0.2m/s

]2
Process noise I−1

w =
(
0.2m/s2

)2
s−1

[
1
3
T 3 1

2
T 2

1
2
T 2 T

]
Measurement noise R = I−1

v = (0.2m)2

Brake ramp slope rbrake = −8m/s3

Brake ramp up time tramp = 0.405 s

Nevertheless, braking to stand-still is a plausible option for
a more cautious driver.

From the perspective of a driver assistance system built
into the second vehicle, early differentiation between the
two driver intentions is crucial for reliable prediction and
action planning. Thus, the problem is formulated as a change
detection task in the framework from Sec. II-A. The time-
discrete (sampling time T , tk = k · T ) relative longitudinal
dynamics are described by the state variables x (relative
distance) and vx (relative velocity) as:[

x
vx

]
k+1

=

[
1 T
0 1

] [
x
vx

]
k

+

[
0.5T 2

T

]
fk + wk (30a)

yk =
[
1 0

]
xk + vk . (30b)

All noise processes are assumed Gaussian and the parameters
of this system are detailed in Tab. I. The brake deceleration
fk is modelled using a simple ramp function with the slope
parameter θ = rbrake and fixed ramp up time tramp:

fk = [tk − (tk − tramp)σ (tk − tramp)] · rbrake . (31)

The resulting deceleration and velocity are shown in Fig. 3.
It is assumed that a Gaussian estimate of the initial state

with x̂k−L+1 = N
(
xk−L+1,I−1

x̃k−L+1

)
is given. Then,

the Generalised Least-Squares estimator (12) provides the
maximum likelihood solution to the regression problem (10).
The detection is then performed according to (13).

Monte-Carlo simulation results of this decision rule will
be presented in the following section and compared to the
asymptotic GLR test statistic (15).

B. Simulation results

Now, the previously described system is simulated in
Nsim = 105 independent iterations for different detection
window lengths L. The initial time-step considered in the
detection corresponds to the first occurrence of the decelera-
tion.10 In each iteration, an estimate θ̂ of the brake ramp slope

10In practice, a sliding window will encompass time-steps both before and
after occurrence of the change. One could treat the time of occurrence as
an additional unknown parameter which is to be estimated in the GLR test
[13]. By considering only those measurements which contribute information
to the detection problem, we thus analyse the optimal performance.
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STOP

Fig. 2. Illustration of the application example. The ego vehicle (equipped with a front facing environment sensor) and a preceding target vehicle approach
a traffic light at equal initial velocity. Given the remaining distance to the traffic light when the signal switches from green to yellow, it is ambiguous,
whether the driver of the target vehicle intends to stop or pass. For driver assistance functions, early detection of this driver intention is a crucial task.
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Fig. 3. Acceleration and velocity profiles.

parameter is calculated according to (12) and the detection
rule (13) is evaluated for different threshold values γ:
• Firstly, γ is varied within the minimum and maximum

observed values on the left hand side of (13). As the true
realisations of the two hypotheses are known, the true
and false positive rates can be calculated. This leads
to the ROC curves displayed in Fig. 4. Each curve
corresponds to one window length L.

• Secondly, the true positive rate PD at a constant value
PFA = 0.05 as part of the overall ROC curve is
evaluated and visualised over L in Fig. 5(a).

In both cases, the predictions given by the asymptotic GLR
test statistic (15) are shown for comparison. It can be ob-
served that a a good correspondence to the simulated values
is achieved. It is furthermore notable from Fig. 5(a) that PD

over L resembles a sigmoid curve. Therefore, even if only
approximate models are available, these can be employed
to estimate the interval of linear growth and thus a sensible
initial value on the minimum required L.

V. CONCLUSION

Statistical models of upper performance bounds are impor-
tant means for an efficient system design process. This work
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Fig. 4. Receiver Operating Characteristic curves.
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Fig. 5. Detection probability PD and increments P∆
D for false positive

probability PFA = 0.05.

has studied such bounds in a binary decision problem, e.g. an
intention recognition task for driver assistance functions. The
theoretical contribution is a recursive form of the optimum
test statistic. This allows to study how the number of
measurements considered in the decision problem affects the
attainable performance. A Monte-Carlo simulation has been
used to verify and investigate the analytical result.
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In future works, one could enhance the problem formula-
tion to m-ary decision problems. Moreover, connecting the
dynamic system description used here to other models, e.g.
Hidden Markov Models [7], would be an interesting topic.

VI. APPENDIX

A. Proof of lemma 1

In order to find a recursion for ML+1, a partitioning for
ML is introduced:

ML =
(
IX̃L

+ H>LIVL
HL

)−1

(32)

=

([
A B
B> C

]
+

[
H>L−1IVL−1

HL−1 0

0 C>IvC

])−1

Calculating the inverse block-wise gives:

ML,11 = (33a)(
A + H>L−1IVL−1

HL−1 −B
(
C + C>IvC

)−1

B>
)−1

ML,22 = (33b)(
C + C>IvC−B>

(
A + H>L−1IVL−1

HL−1

)−1

B
)−1

ML,21 = −ML,22B>
(
A + H>L−1IVL−1

HL−1

)−1

(33c)

ML,12 = M>
L,21 (33d)

The central idea is then to leverage the Markov assumption
on the system (1a). This yields that IX̃L+1

has a block-
diagonal form [9]:11

IX̃L+1
=

A B 0

B> C + D11 D12

0 D21 D22

 (34)

and therefore

ML+1 =
(
IX̃L+1

+ H>L+1IVL+1
HL+1

)−1

(35)

can be calculated block-wise. The exact expressions for D11,
D21 and D22 follow from inserting the system equation (1a)
into the Fisher information matrix (5) and are given in (22).

Consider the inversion in (35) which defines ML+1,11:

ML+1,11 =

(
M−1

L +

[
0
In

]
Υ
[
0 In

])−1

= ML −
[
ML,12

ML,22

]
Υ (In+ML,22Υ)

−1 [ML,21 ML,22

]
where Υ :=

(
D11 −D12

(
D22 + C>IvC

)−1

D21

)
.

(36)

Here, we have used a version of the matrix inversion lemma
suitable for singular Υ [20].12.

11The notation of the entries of IX̃L+1
is chosen in accordance with

[9]. Though, in order to avoid confusion with the system matrices from (1),
a calligraphic font (A) is used here.

12
(
A+CBC>

)−1
= A−1−A−1CB

(
I + C>A−1CB

)−1
C>A−1

Next, the lower right element ML+1,22 is studied:

ML+1,22 =

(
D22 + C>IvC−D21

(
C + D11 + C>IvC

−B>
(
A + H>L−1IVL−1

HL−1

)−1

B
)−1

D12

)−1

(33b)
=

(
D22 + C>IvC−D21

(
D11 + M−1

L,22

)−1

D12

)−1

.

(37)

Finally, ML+1,21 (which can be shown to equal M>
L+1,12):

ML+1,21 = −ML+1,22 ·
[
0 D21

]
·
[
A + H>L−1IVL−1

HL−1 B
B> C + D11 + C>IvC

]−1

(33b)
= −ML+1,22D21

(
D11 + M−1

L,22

)−1

·
[
−B>

(
A + H>L−1IVL−1

HL−1

)−1

In

]
(33c)
= −ML+1,22D21

(
D11 + M−1

L,22

)−1 [
M−1

L,22ML,21 In
]

(37)
= −

(
D22 + C>IvC−D21

(
D11 + M−1

L,22

)−1

D12

)−1

·D21

(
D11 + M−1

L,22

)−1

M−1
L,22 ·

[
ML,21 ML,22

]
= −

(
D22 + C>IvC

)−1

D21

·
(
D11 −D12

(
D22 + C>IvC

)−1

D21 + M−1
L,22

)−1

·M−1
L,22 ·

[
ML,21 ML,22

]
= −

(
D22 + C>IvC

)−1

D21

(
Υ + M−1

L,22

)−1

M−1
L,22︸ ︷︷ ︸

=:ΓL+1

·
[
ML,21 ML,22

]
= ΓL+1 ·

[
ML,21 ML,22

]
. (38)

Therefore, ML+1,21 consists of L submatrices M
(l)
L+1,21 of

size n× n:

ML+1,21 =
[
M

(1)
L+1,21 . . . M

(L)
L+1,21

]
. (39)

With (38), one obtains an explicit expression:

M
(l)
L+1,21 =

L∏
j=l

Γj+1Ml,22 . (40)

B. Proof of theorem 1

First note, that ΦL+1 as defined in (10) can be written as
ΦL+1 =

[
Φ>L φL+1

]>
. Then, inserting the block-matrices

which constitute ML+1 from (21) into IEL+1 in (18) and

7



applying the multiplications with ΦL+1θ1 from (14b) yields:

λL+1 =

[
(ΦLθ1)

>
(
φ>L+1θ1

)>]
IEL+1

[
ΦLθ1

φ>L+1θ1

]
= (ΦLθ1)

>
(
IVL

− IVL
HLMLH>LIVL

)
(ΦLθ1)︸ ︷︷ ︸

=λL

+ (ΦLθ1)
> IVL

HL

[
M>

L,21

ML,22

]
Υ
(
Υ + M−1

L,22

)−1

·M−1
L,22

[
ML,21 ML,22

]
H>LIVL

(ΦLθ1)
>

− 2 (ΦLθ1)
> IVL

HLM>
L+1,21C

>Iv

(
φ>L+1θ1

)
+
(
φ>L+1θ1

)> (
Iv − IvCML+1,22C

>Iv

)(
φ>L+1θ1

)
= λL + λ∆

L+1 . (41)

The key to simplify λ∆
L+1 is to study the product

ΛL+1︸ ︷︷ ︸
ν×n

= (ΦLθ1)
>︸ ︷︷ ︸

ν×L·m

· IVL︸︷︷︸
L·m×L·m

· HL︸︷︷︸
L·m×L·n

·M>
L+1,21︸ ︷︷ ︸
L·n×n

. (42)

Inserting (40) into (42) yields

ΛL+1 =
L∑
l=1

(
φ>l θ1

)>
IvCM

(l)
L+1,21

>

=
L∑
l=1

(
φ>l θ1

)>
IvC

 L∏
j=l

Γj+1Ml,22

>

=

L−1∑
l=1

(
φ>l θ1

)>
IvC

L−1∏
j=l

Γj+1Ml,22

> Γ>L+1

+
(
φ>Lθ1

)>
IvC (ΓL+1ML,22)

>

=

(
ΛL +

(
φ>Lθ1

)>
IvCML,22

)
Γ>L+1 . (43)

With this intermediate result, all occurrences of ML,21 and
ML+1,21 in (41) can be replaced:13

λ∆
L+1 =

(
ΛL +

(
φ>Lθ1

)>
IvCML,22︸ ︷︷ ︸

(43)
=ΛL+1(Γ>L+1)

−1

)
Υ (44)

·
(
Υ + M−1

L,22

)−1

M−1
L,22

(
ΛL +

(
φ>Lθ1

)>
IvCML,22

)>
− 2ΛL+1C

>Iv

(
φ>L+1θ1

)
+
(
φ>L+1θ1

)> (
Iv − IvCML+1,22C

>Iv

)(
φ>L+1θ1

)
= (a− b)

>
(
I−1

v −CML+1,22C
>
)−1

(a− b) ,

with

a = CΛ>L+1,

b =
(
I−1

v −CML+1,22C
>
)
Iv

(
φ>L+1θ1

)
. (45)

13Showing the equality of (44) and (45) involves tedious but straight-
forward calculations. Due to lack of space, the details are omitted here.

REFERENCES

[1] C. Laugier, I. Paromtchik, M. Perrollaz, M. Yong, J.-D. Yoder, C. Tay,
K. Mekhnacha, and A. Negre, “Probabilistic analysis of dynamic
scenes and collision risks assessment to improve driving safety,”
Intelligent Transportation Systems Magazine, IEEE, vol. 3, no. 4,
pp. 4–19, 2011.

[2] M. Schreier, V. Willert, and J. Adamy, “Bayesian, maneuver-based,
long-term trajectory prediction and criticality assessment for driver
assistance systems,” in Intelligent Transportation Systems (ITSC), 17th

International IEEE Conference on, pp. 334–341, 2014.
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