
Performance Evaluation and Statistical Analysis of Algorithms for
Ego-Motion Estimation

Jan Erik Stellet1, Christian Heigele1, Florian Kuhnt2, J. Marius Zöllner2 and Dieter Schramm3
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Abstract— This contribution investigates algorithms for ego-
motion estimation from environmental features. Various formu-
lations for solving the underlying procrustes problem exist. It is
analytically shown that in the 2-D case this can be performed
more efficiently compared to common implementations based
on matrix decompositions. Furthermore, analytic error propa-
gation is performed to second order which reveals a multiplica-
tive estimator bias. A novel bias-corrected solution is proposed
and evaluated in Monte Carlo simulations. Propagation of the
derived error model to a representation used in the recursive
trajectory reconstruction is presented and verified.

I. INTRODUCTION

Ego-motion estimation is an important topic both in
robotics and advanced driver assistance (ADAS) applica-
tions. For an increasing number of upcoming automated
driving functions, it is of paramount importance to accurately
estimate the current vehicle position and driven trajectory.

Localisation approaches can be divided into global posi-
tioning against a known map and local, relative estimation
with incremental mapping. One key advantage of employing
relative position estimation is that it does not depend on
external information sources such as GPS, which might be
unavailable, e.g. in parking decks or tunnels.

The core problem of relative trajectory estimation is to
reconstruct the vehicle’s movements between two consecu-
tive time steps. This can be accomplished based on inertial
measurements (IMU), correspondences in static environmen-
tal features or a fusion of both. In this contribution it is
studied how the relative motion can be estimated from two
sets of corresponding feature points (procrustes problem).
This underlying task is not dependent on a specific sensor
technology.

The scope of this work is twofold: Firstly, different for-
mulations of the procrustes solution are compared in terms
of their processing times when implemented using standard
libraries. This is especially relevant for the real-time require-
ments that are prevalent in the ADAS domain. Secondly,
statistical properties of the estimate are studied. This has
been recently demonstrated to first order for an algorithm in
3-D which is based on a singular value decomposition (SVD)
[1]. In this work, second order approximations are calculated
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Fig. 1. The same scene at two different poses. Two environmental maps
are shown that are built from stereo video measurements. From each map,
a set of significant features is extracted and a corresponding match in the
other data set is searched for. Invalid matches have already been removed.

for the solution in 2-D which leads to simple closed-form
expressions of the estimator’s bias.

As the eventual application, estimating a vehicle’s trajec-
tory over multiple time steps is considered. The recursive
expressions for the trajectory reconstruction use a different
representation of the incremental position updates. Propaga-
tion of the error model to this stage is analytically studied
and verified with Monte Carlo simulations.

The rest of this work is organized as follows: Background,
problem formulation and different versions of the solution
are introduced in Sec. II. A computational analysis with
both analytic and empirical evaluations is given in Sec. III.
Results of statistical analysis of the rotation estimates and
the position update are presented in Sec. IV and Sec. V. All
findings are summarised in Sec. VI.

II. BACKGROUND AND PREVIOUS RESULTS

A. Localisation based on correspondence sets

A frequently applied localisation strategy is to extract
salient environment features from either a map or live mea-
surements. These are compared and matched to a database
or previous measurements, invalid matches are removed and
corresponding features assigned. The corresponding sets are
then used for incremental trajectory estimation. Essentially,
the local transformation between two vehicle poses is esti-
mated in order to support, correct or validate odometry, e.g.
provided by a dead reckoning system.

Multiple feature descriptors have been proposed [2], these
are either vision-based, e.g. SIFT [3], SURF [4] or ORB
[5], geometric, e.g. line segments, or keypoints on occupancy
grids [6] as in Fig. 1.

A critical point within such methods is to remove all
invalid matches. This is often achieved by the use of a
RANSAC algorithm, where a small number n of corre-
sponding pairs is drawn from a tentative set and the best
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matching transformation model for this subset is determined.
The overall number of features within both maps that support
this model is then identified. Since this procedure is typically
executed for thousands of cycles, an efficient method for
estimating the transformation model in each iteration has to
be used. Especially embedded devices are severely limited
in terms of computational performance and memory [6].

B. Procrustes problem

Let two registered sets of 2-D feature locations measured
from a moving platform be denoted as {x′i}

n
i=1, {y′i}

n
i=1. As

the features are assumed to be static, the relative location
measurements systematically change due to the vehicle’s
movements. Transformation into the coordinate system of
the current time step is described by translation t and by
rotation angle ρ:

y′ = Rx′ + t (1)

where

R =

[
c −s
s c

]
=

[
cos (ρ) − sin (ρ)
sin (ρ) cos (ρ)

]
. (2)

If at least n ≥ 2 point correspondences are known, the ego-
motion parameters R, t can be retrieved. For the estimation,
the sum of squared errors is used as a cost function:

J =

n∑
i=1

‖y′i −Rx′i − t‖2 . (3)

In the case of isotropic, uncorrelated Gaussian noise, min-
imising this function yields an optimal estimate [7].

C. Solution to the 2-D procrustes problem

Various closed-form solutions to the procrustes problem
(3) for the general 3-D case have been presented and include
singular value decomposition [8], [9], polar decomposition
[10] or quaternion representations [11], [12]. Apart from
degenerate cases, these produce identical results [13].

In the domain of driver assistance, a planar world assump-
tion is commonly made. For this two-dimensional case, the
cost function (3) can be analytically minimised with respect
to the entries of R and t [14]. Incorporating the non-linear
constraints on the rotation parameters (2) gives the following
Lagrangian problem formulation:

min
c,s,t

n∑
i=1

‖y′i −Rx′i − t‖2 + Λ(c2 + s2 − 1) . (4)

The centroids of the sets of points are given as:

x̄ =
1

n

n∑
i=1

x′i, ȳ =
1

n

n∑
i=1

y′i . (5)

In the following, feature locations relative to the centroids
are denoted as xi = x′i − x̄, yi = y′i − ȳ and X =[
x1 . . . xn

]
, Y =

[
y1 . . . yn

]
.

Then, one obtains the following solution for (4) [14]:

c =
f1√

f2
1 + f2

2

, s =
f2√

f2
1 + f2

2

(6a)

t = ȳ −Rx̄ (6b)

x
y

θd

t

Fig. 2. Representation of incremental position updates.

with

f1 =

n∑
i=1

x>i yi, f2 =

n∑
i=1

x>i

[
0 1
−1 0

]
yi . (7)

A recursive formulation is presented in [14].

D. Trajectory reconstruction

The previously described approach can be used to estimate
relative motion parameters in 2-D between two consecutive
time steps. In order to reconstruct a whole trajectory in a
fixed coordinate system, a recursive formulation is used.

Denoting global position as pk−1 ∈ R2 and orientation
as ρk−1 at time step k − 1. A translation tk of static world
features is given relative to the vehicle’s orientation and thus
the global vehicle position updated as:

pk = pk−1 −
[
cos (ρk) − sin (ρk)
sin (ρk) cos (ρk)

]
tk (8)

The updated vehicle orientation is calculated independently
of the translation from the entries ck, sk in Rk as:

ρk = ρk−1 − arctan

(
sk
ck

)
. (9)

A non-recursive form of this algorithm is given in [15]:

pk =

k∑
i=1

di

[
cos
(∑i

j=1 θj

)
sin
(∑i

j=1 θj

)]>
, (10)

where as illustrated in Fig. 2:

di = ‖ti‖ (11)

θi = ∠
(
−R>i ti

)
− ∠ (−ti−1) . (12)

This formulation is used in [15] for analysis of the cumulated
errors in the estimated object trajectory pk. The study,
however, is based on the assumption of Gaussian error
distributions in d and θ. Within the same framework, these
results will be extended in Sec. V of this work by studying
error propagation from feature location measurements to d, θ.

III. COMPUTATIONAL ANALYSIS

The explicit solution to the 2-D case from Sec. II-C
incorporates only basic arithmetic operations. In contrast to
methods that involve matrix decompositions, redundant cal-
culations are avoided which is analytically shown in Sec. III-
A. This motivates an empirical evaluation of processing times
for various optimised implementations in Sec. III-B.
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A. Analytic comparison to an SVD-based solution

A well-known solution to (3) can be obtained from an
SVD of the matrix A := Y>X. Denoting this decomposition
as A = UΣV>, one obtains the solution for R as [8]:

R = UCV>, with C =

[
1 0

0 det(UV>)

]
. (13)

In the following it will be shown that while this algorithm
gives the same solution as the closed-form expression (6) it
includes redundant calculations.

From the definition of the SVD, U are the eigenvectors of
AA> and V> the eigenvectors of A>A. The square roots
of the corresponding eigenvalues determine the diagonal
matrix Σ. Because U,V> are orthogonal matrices and all
eigenvectors can be assumed normalised without loss of
generality, these can be expressed as:

U =

[
cψ −sψ
sψ cψ

]
, V> =

[
cφ sφ
−sφ cφ

]
. (14)

Interpreting the matrix entries as triangular functions, the
solution (13) is reformulated as:

R = UV> =

[
cos (ψ − φ) − sin (ψ − φ)
sin (ψ − φ) cos (ψ − φ)

]
. (15)

It is immediately clear from this expression that calculating
R by individual decomposition in U and V> induces
redundant computations. Only the difference of the angles
ψ − φ is required instead of the individual values, which
constitute the full decomposition. It is shown in the appendix
how this angle difference can be explicitly calculated leading
to the same solution as (6).

B. Experimental comparison to standard implementations

Experiments have been performed to compare a plain
C++ implementation1 of the direct solution (6) against three
different implementations of the SVD-based algorithm (13).
These are built upon the SVD routines provided by the
OpenCV 2.4.6 library, the LAPACK 3.5.0 library and an
optimised implementation of the 2-D SVD from the cgeom
library.2

Processing times for different numbers of samples are
stated in Fig. 3. It can be observed that the plain implementa-
tion outperforms the SVD-based algorithms significantly. A
linear dependence on the number of features n is indicated
in both cases. This was expected, as the calculation of the
matrix A for the SVD decomposition (13) and the factors
f1 and f2 in (7) provide the same computational complexity.
Further evaluations have been performed using MATLAB.
Processing times of the direct implementation were in the
order of 1× 10−4 s instead of 1× 10−6 s in the C++ case.

Some remarks on the practical relevance of these figures:
The differences in the calculation speed seen in Fig. 3 might
appear not too significant at first glance. However, if the
transformation estimation is applied, e.g., in a RANSAC

1Optimisations, possibly with consideration of special processor instruc-
tions could improve the computation speed further.

2https://github.com/victorliu/Cgeom
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Fig. 3. Runtime analysis in C++ simulation with different algorithms. Time
for estimation of the transformation parameters varying over the number of
samples.

scheme, as described in Sec. II-A, its execution is repeated
thousands of times. Given that a single run takes in the order
of 1× 10−6 s, the model-determining part of the RANSAC
algorithm lasts in the order of 1× 10−3 s. Therefore, an
improvement in the runtime of one order,3 can have a non-
neglectable impact on the real-time capability of the overall
procedure. For example, the algorithm used in [6] features an
overall runtime of approximately 8 ms which would increase
up to over 13 ms using OpenCV/LAPACK instead of the
direct implementation.

In driver assistance applications, plain implementations
are favoured over the use of external libraries for reasons
of memory consumption, verification (ISO 26262) and legal
aspects. Moreover, constraints in the type and the alignment
of data structures can be avoided by not relying on external
libraries. This is significant, e.g. for embedded devices where
the available memory storage is really tight or special data
types have to be used.

IV. STATISTICAL ANALYSIS

In this section it is analysed how zero mean stochastic
errors ∆x,∆y added to the true feature positions affect the
estimation results. It is assumed that these errors are statisti-
cally independent. Emphasis is put on the difference between
the true value of the estimated rotation and the expectation
of its estimate (bias). Non-zero mean measurement errors or
incorrect approximations of skewed error distributions [16]
are common cause for biased estimates. A second cause is
that even for symmetric, zero mean error densities, non-linear
estimation algorithms produce biased estimates [17]. In the
following, this inherent property of the relative localisation
algorithm (6) will be studied.

3For sample numbers n ≤ 10 the difference between the optimized 2×2
SVD and the direct solution is hard to spot in Fig. 3 but it takes approx.
5× 10−8 s for the direct approach and 3× 10−7 s for the SVD.

3
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A. Anisotropic Gaussian noise

Firstly, the pertubations in f1, f2 are calculated from (7):

∆f1 =

n∑
i=1

x>i ∆yi + y>i ∆xi + ∆x>i ∆yi (16a)

∆f2 =

n∑
i=1

x>i

[
0 1
−1 0

]
∆yi + y>i

[
0 1
−1 0

]>
∆xi

+ ∆x>i

[
0 1
−1 0

]
∆yi . (16b)

A first-order approximation is used in [1] by neglecting the
last term in these expressions.

Given a stochastic error model for ∆x,∆y, the above
expressions allow to calculate the error distribution of ∆f .
In the case of Gaussian zero mean errors ∆x ∼ N (0,Cx),
∆y ∼ N (0,Cy) a Gaussian distribution ∆f ∼ N (0,Cf )
is obtained.

Secondly, it is analysed how the Gaussian errors in ∆f are
mapped to the estimated values c, s. The rotation estimation
formulae (6a) describe a non-linear function of f . While
previous research [1] has investigated this problem to first
order, a second-order series expansion will be employed here.
This allows to analyse the estimator’s bias.

Taylor expansion of (6a) to second order is used to
calculate pertubations ∆c,∆s from the true values c0, s0:

∆c := c− c0 ≈ g>c ∆f +
1

2
∆f>Hc∆f (17a)

∆s := s− s0 ≈ g>s ∆f +
1

2
∆f>Hs∆f (17b)

with

g>c =
1

(f2
1 + f2

2 )
3
2

[
f2

2 −f1f2

]
(18a)

g>s =
1

(f2
1 + f2

2 )
3
2

[
−f1f2 f2

1

]
(18b)

and

Hc =
1

(f2
1 + f2

2 )
5
2

[
−3f1f

2
2 2f2

1 f2 − f3
2

2f2
1 f2 − f3

2 2f1f
2
2 − f3

1

]
(19a)

Hs =
1

(f2
1 + f2

2 )
5
2

[
2f2

1 f2 − f3
2 2f1f

2
2 − f3

1

2f1f
2
2 − f3

1 −3f2
1 f2

]
. (19b)

Then, the expectation of ∆c,∆s is calculated from (17):

E [∆c] =
1

2
tr (HcCf ) , E [∆s] =

1

2
tr (HsCf ) . (20)

This expression shows that even in the case of zero mean
input errors, the estimator’s output is biased. Secondly, the
variance of

[
∆c ∆s

]>
is obtained to first order:

Var

([
∆c
∆s

])
=

[
g>c
g>s

]
Cf

[
gc gs

]
. (21)

B. Isotropic Gaussian noise

In the special case of uncorrelated isotropic noise with
Cx = σ2

xI, Cy = σ2
yI, the previously derived expressions

can be simplified.
Firstly, it is found using (16) that Cf = σ2

fI with

σ2
f = σ2

x tr
(
YY>

)
+ σ2

y tr
(
XX>

)
+ 2nσ2

xσ
2
y . (22)

Then, (20)-(21) result in:

E
[[

∆c
∆s

]]
= −1

2

1

f2
1 + f2

2

σ2
f

[
c0
s0

]
(23a)

Var

([
∆c
∆s

])
=

1

f2
1 + f2

2

σ2
f

[
s2

0 −c0s0

−c0s0 c20

]
. (23b)

From (23a) follows that the estimator’s bias is proportional
to the absolute values with the relative estimation bias

λ =
1

2

1

f2
1 + f2

2

σ2
f . (24)

Error propagation to the estimated translation t from (6b) is
straight-forward:

E [∆t] = −λ
[
x̄1 −x̄2

x̄2 x̄1

] [
c0
s0

]
, Var (∆t) = C∆t (25)

with C∆t,11 = 2λ (c0x̄2 + s0x̄1)
2

+ n−1
(
σ2
x + σ2

y

)
C∆t,12 = −2λ (c0x̄2 + s0x̄1) (c0x̄1 − s0x̄2)

C∆t,21 = C∆t,12

C∆t,22 = 2λ (c0x̄1 − s0x̄2)
2

+ n−1
(
σ2
x + σ2

y

)
.

C. Bias-corrected algorithm

Based on the previous findings, a debiased estimator
formula will be proposed. As there is in fact a multiplicative
disturbance, a correction factor is added to (6a). As the
correction factor is identical for both estimates, orthogonality
of R is preserved:

cnew =
f1√

f2
1 + f2

2

1

1− λ
≈ f1√

f2
1 + f2

2

(1 + λ) (26a)

snew =
f2√

f2
1 + f2

2

1

1− λ
≈ f2√

f2
1 + f2

2

(1 + λ) . (26b)

It has to be noted that the bias has been analytically derived
relative to the true values c0, s0 which are not known in
practice. Therefore the estimated values are used in the
correction (expectation of bias).

D. Monte Carlo experiment

In order to verify the bias estimation calculated in the
previous section, Monte Carlo simulations are used. Feature
points

{
x′i,0
}n
i=1

are chosen from a uniform distribution in
[−1, 1] × [−1, 1]. Concentrating on the rotation estimation
alone, idealised locations of

{
y′i,0

}n
i=1

are obtained by rota-
tion with angle ρ according to (1). Simulated measurements
x′i,y

′
i are generated by adding uncorrelated, isotropic zero

mean Gaussian errors with σ = 0.2 to both sets.
First, the rotation angle ρ is varied for a fixed set of

n = 10 feature points. With N = 106 realisations of
measurement noise each, the mean estimation bias for the
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Fig. 4. Monte Carlo simulation results for N = 106 iterations using n =
10 uniformly distributed feature points x′i ∈ [−1, 1]×[−1, 1]. Measurement
noise is σ = 0.2. Estimation bias in rotation parameters c, s according to
(6) and the bias-corrected cnew, snew from (26) is plotted over rotation
angle ρ. The analytic expectation (23a) matches the empirical simulation
results and the proposed novel solution yields almost bias-free estimates.
The bias-correction is calculated using the uncertain measured quantities
only instead of the exact c0, s0.
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Fig. 5. Mean relative estimation bias λ according to (24) for sets of
uniformly distributed feature points, rotation angle ρ = 45◦ and isotropic
measurement noise with standard deviation σ. The relative bias grows for
increased measurement noise and smaller sample size n.

standard algorithm (6) is calculated and compared to the
analytic expectation (23a). Results in Fig. 4 show that
the bias in ∆c, ∆s is proportional to the absolute values
cos (ρ), sin (ρ). A good correspondence between analytic and
simulated values is obtained. Moreover, the mean simulation
bias is evaluated for the novel algorithm (26) and almost
bias-free estimates are obtained.

Secondly, the relative estimation bias λ from (24) is
evaluated for different configurations of sample size n and
measurement noise σ. In order to eliminate the influence
of the distribution of feature locations, 104 realisations of
uniformly distributed sets

{
x′i,0
}n
i=1

are generated.
Figure 5 visualises the mean relative bias for each con-

figuration. It can be noted that especially for small sample
sizes, the bias easily reaches values of 5% or more. While
small systematic deviations might be acceptable for one-time
evaluation, the error will typically be integrated over time in
common applications. That is why the novel formula (26) is
proposed to achieve bias-free estimates.

V. ERROR PROPAGATION IN TRAJECTORY
RECONSTRUCTION

The trajectory reconstruction process from Sec. II-D uses
a representation (R, t)→ (d, θ) for the incremental position
updates. Given the previously derived error model for esti-
mates R, t, error propagation to d and θ from (11)-(12) will
be studied.

A. Length d of incremental update

First, error propagation to the norm d of the translation
vector t whose solution is given by (6b) is analysed:

d = ‖t‖ =
√
t2x + t2y . (27)

This will be performed by second order Taylor series ex-
pansion of (27) with respect to the estimated translation pa-
rameters tx, ty . The linear part of the approximation is used
together with C∆t from (25) to calculate the variance σ2

d.
One obtains with τ := t/‖t‖ as the normalised translation
vector:

Var (d) = 2λ

(
τ>R

[
0 1
−1 0

]
x̄

)2

+
σ2
x + σ2

y

n
. (28)

Second order expansion yields the expected value of ∆d:

E [∆d] =
1

d

(
λ
(
τ>Rx̄

)2
+
σ2
x + σ2

y

2n

)
. (29)

B. Orientation θ of incremental update

The calculation of θ involves estimates of the rotation
matrix Ri and translation vectors ti, ti−1 from two different
time-steps. As measurement errors are assumed independent
over time, the two summands θ1 := ∠ − R>i ti and θ2 :=
∠− ti−1 in (12) will be treated separately.

First, Gaussian error propagation with C∆t from (25)
yields for the variance in ∆θ2:

Var (∆θ2) =
1

d2

(
2λ
(
τ>ȳ

)2
+
σ2
x + σ2

y

n

)
. (30)

A similar reasoning is used to calculate the variance in ∆θ1.
Here, a virtual measurement t′ := −R>t is defined which
allows to employ the same partial derivatives as in (30).
Covariance C∆t′ is derived using (23b). This results in:

Var (∆θ1) =
1

d2

(
2λ
(
τ>Rx̄

)2
+
σ2
x + σ2

y

n

)
. (31)

Finally, one obtains Var (∆θ) = Var (∆θ1)+Var (∆θ2) with
expressions (30)-(31) evaluated for the respective time steps.

With a second order expansion, the bias is calculated as:

E [∆θ1] =
2λ

d2

(
τ>Rx̄

)(
τ>
[

0 1
−1 0

]
ȳ

)
(32)

E [∆θ2] =
2λ

d2

(
τ>ȳ

)(
τ>
[

0 1
−1 0

]
ȳ

)
. (33)

5



C. Monte Carlo experiment

The previously derived expressions for bias and variance
are verified in Monte Carlo simulations. A set of n =
10 uniformly distributed features x′0 ∈ [0 m, 20 m]

2 is
generated. Because the last terms in (28)-(29) depend on
the relation between x̄, ȳ and the ego-rotation ρ, different
translations t with θ = ∠t and ‖t‖ = 1 m are employed
while ρ = 20◦ is fixed. Thus, the virtual measurements
y′0 = Rx′0 + t are obtained. Isotropic zero mean Gaussian
errors with σ = 0.2 m are added to both sets.

Simulation results are visualised in Fig. 6. Both bias and
variance in ∆d exhibit a fixed offset and an alternating
component which depends on the orientation of t. The
analytic expressions closely match the simulation results.
Here, the bias in ∆d reaches up to 2% of the absolute value.
This is because taking the norm (27) of zero mean Gaussian
random variables ∆tx,∆ty produces a skewed distribution
with non-zero mean in ∆d. Simulations with varying ρ yield
similar results with the same mean variance over θ.

For the derived error model in ∆θ, a good correspondence
to the simulation results in Fig. 6(b) is observed as well. As
the simulation considers only a single step, ∆θ1 and ∆θ2

are evaluated individually.

D. Effect of bias in ∆d on cumulative trajectory error

The analytic expression (29) for the bias in ∆d and the
exemplary simulation results in Fig. 6(a) indicate a non-
negligible drift in the length of each incremental position
update. As the values di are accumulated in the position
reconstruction (10) one intuitively expects a constant drift
over time in the estimated position pk.

However, as will be briefly shown in the following, the
bias in ∆d is in fact compensated for by the angular noise
process ∆θ. Therefore, correcting the bias in d alone would
reduce the achieved accuracy. In order to illustrate this, the
incremental update in the x-component for the first time step
is considered as a special case of (10):

px = d cos (θ) = (d0 + ∆d) cos (θ0 + ∆θ) . (34)

For simplified expressions, assume θ0 = 0. Then, under the
assumption of independence between ∆d,∆θ:

E [px − px,0] = (d0 + E [∆d])E [cos (∆θ)]− d0

= (d0 + E [∆d)] exp
(
−0.5σ2

∆θ

)
− d0 . (35)

Inserting E [∆d] from (29), σ2
∆θ from (33) and using the

approximation exp
(
−0.5σ2

∆θ

)
≈ 1− 0.5σ2

∆θ gives:

E [px − px,0] ≈ −µ
2
∆d

d
− λτ>ȳ

(µ∆d

d
+ 1
)
− λτ>Rx̄ .

(36)
For typical values of the sensor and measurement character-
istics, one can verify µ∆d

d � 1 and finally that the whole
expression is smaller than µ∆d by approximately one order
of magnitude. Hence, the bias in ∆d is compensated for by
the induced bias in cos (∆θ). It needs to be remarked that a
long term drift of the estimated trajectory is expected due to
the noise in ∆θ which is studied in [15].

VI. CONCLUSION

In this work, low-level algorithms for solving the problem
of relative position estimation have been studied. Focussing
on the two-dimensional case, with its predominant appli-
cations in the driver assistance domain, computational and
statistical analyses have been performed.

A significant speed-up is revealed when comparing a more
efficient solution to algorithms based on matrix decompo-
sitions. It is analytically shown that inherently redundant
computations in algorithms based on singular value decom-
positions can be avoided.

For the statistical analysis, error propagation in closed
form with second order expansion has been facilitated by the
direct expressions. In order not to be restricted to a specific
sensor technology, a generic measurement model has been
assumed. Expected values of the estimator bias have been
derived and a new bias-corrected solution has been proposed.
Monte Carlo simulations show that the novel formula yields
estimates with bias reduced by one order of magnitude.

The error model for the single step position update is
propagated to a representation used for recursive trajectory
reconstruction. Derived expressions for bias and variance
consist of fixed offset values and periodic components.
This new error model allows to extend the work [15] on
cumulative position drift in the reconstructed trajectory.

Experimental application of the provided scheme in a
vehicle localisation task using a grid-based environment
representation is demonstrated in [6].

APPENDIX

Starting with the definitions of U and V>:

L := AA> = UΣΣ>U> (37a)

M := A>A = VΣ>ΣV> . (37b)

The entries of the diagonal matrix Σ are the eigenvalues of
AA> denoted as σ1, σ2. Then, the following equations can
be obtained from (37):

L11 − L22 = cos (2ψ)
(
σ2

1 − σ2
2

)
(38a)

M11 −M22 = cos (2φ)
(
σ2

1 − σ2
2

)
(38b)

L12 + L21 = sin (2ψ)
(
σ2

1 − σ2
2

)
(38c)

M12 +M21 = sin (2φ)
(
σ2

1 − σ2
2

)
. (38d)

Hence, the angles ψ and φ and thus the decomposition in
U,V> according to (14) can be calculated:

g := tan(2ψ) =
L12 + L21

L11 − L22
, h := tan(2φ) =

M12 +M21

M11 −M22
.

Note that it is not necessary to explicitly calculate the eigen-
values σ1, σ2, i.e, Σ from the full decomposition. Applying
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Fig. 6. Monte Carlo simulation results (N = 106 iterations) of the incremental position updates. A set of n = 10 uniformly distributed features
x′0 ∈ [0 m, 20 m]2 and varying direction of the translation θ = ∠t with ‖t‖ = 1 m are used. Rotation is ρ = 20◦ and measurement noise σ = 0.2 m.

trigonometric relationships, one obtains:

cos (ψ − φ) =
1√
2

1 + 1/

√
1 +

(
g − h
1 + gh

)2
 1

2

(39a)

sin (ψ − φ) =
1√
2

1− 1/

√
1 +

(
g − h
1 + gh

)2
 1

2

. (39b)

Replacing g and h and inserting the elements of L and M
from (37) gives√

1 +

(
g − h
1 + gh

)2

=
(A11 +A22)

2
+ (A12 −A21)

2

(A11 +A22)
2 − (A12 −A21)

2 (40)

and the entries of R can be finally expressed as:

cos (ψ − φ) =
A11 +A22√

(A11 +A22)
2

+ (A12 −A21)
2

(41a)

sin (ψ − φ) =
A12 −A21√

(A11 +A22)
2

+ (A12 −A21)
2
. (41b)

From (7) it is clear that (41) present the same result as (6).
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