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Abstract— The release of highly automated driving functions
requires a thorough validation of safety. In this paper, the
recently introduced 3-circles model is recapitulated. Based on
the 3-circles model, the possible areas of application of simula-
tions to the validation procedure are analyzed and possible
challenges and limitations of simulation-based methods are
given and discussed. An overview and classification of current
simulation concepts is presented. Afterwards, recent research
on the implementation details of simulations is discussed.

I. INTRODUCTION

Recently, a lot of research has been performed on the
development of highly automated driving (HAD) functions.
Hence, a high number of functions of SAE-level 3 and
higher [1] are expected to hit the markets in the next years.
To release HAD functions automotive manufacturers must
thoroughly validate them to make sure, that they are suffi-
ciently safe. However, due to system complexity, emergent
behavior of system components, the high complexity of the
context of HAD functions and the low exposure to critical
situations such as accidents, traditional statistical validation
approaches as endurance runs become infeasible. Therefore,
manufacturers must develop new methods for validation.
Simulations promise to be beneficial since they allow testing
a large variation of contextual scenarios reproducibly in
economical time spans. Since the process of validation is
a complex task, it is necessary to know which of its sub-
tasks can be accomplished by simulations and which can
not. Besides, it is important to know the demands simulations
must fulfill to address the sub-tasks.

For these reasons, this paper discusses the applicability
of simulations to sub-tasks of validation. Additionally, an
overview about recent research regarding the implementation
of simulation-based methods to fulfill sub-task demands is
given.

Our contributions are as follows:
• We analyze the fields of application of simulations for

validation based on the 3-circles model from [2] and
show parts of the validation procedure which might be
solved by simulations. We give possible challenges and
limitations.

• We give a specification of simulation concepts extracted
from recent research.
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• We summarize and discuss recent research done on the
implementation details of simulations for validation.

The paper is structured into the following sections: Sec. II
reviews the 3-circles model. Sec. III explains the types
of evidence which can be gained from simulations and
Sec. IV discusses parts of the validation procedure repre-
sented in the 3-circles model which might be solved by
simulations. Sec. V illustrates a specification of possible
simulation concepts and Sec. VI summarizes recent research
on the implementation of simulation-based methods. Sec. VII
concludes the paper and presents open questions.

II. VALIDATION TRIANGLE AND 3-CIRCLES MODEL

As shown in [2], the aim of validation is to show that
a system realization fulfills its purpose in its context. The
unity of realization, purpose and context forms the validation
triangle. These constituents of the validation triangle are
interdependent and can not be explicitly described in a
complete manner for a HAD function. Reasons are the open
context, the complexity of the implicit purpose and the
emergent behavior of the realization. These problems make
it very challenging to derive a valid specification and to
implement a valid realization for the automated system.

In [2] the terms of required behavior (RB), specified be-
havior (SB) and implemented behavior (IB) were introduced.
RB describes the infinitely complex behavior required in
reality, SB is the explicitly formalized part of it (described
in a specification) and IB includes the implemented results.
The Venn diagram in Fig. 1 shows the three behaviors. Each
of the three behaviors contains a validation triangle.

The triangle in RB shows that the required realization
of the system must fulfill the aimed purpose on the ∞-
complex context of reality. The aimed purpose as well as
the ∞-complex context and the required realization can not
be defined explicitly and formally complete since they are
based on implicit assumptions and the real-world operational
design domain (ODD) is an unstructured open context. A
valid system is not allowed to leave the ODD.

SB contains a formally complete expressed version of the
triangle (“expected to be relevant” context, intended purpose
and specified realization) and IB contains a triangle which
comprises the entities describing the implementation (effec-
tive context, effective purpose and implemented realization).

The validation process has to show that the sets of RB, SB
and IB show a sufficient overlap and cut-set 3 is maximized
(see Fig. 1). For a more elaborated discussion see [2].
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Fig. 1: 3-circles model describing the important entities
necessary for validation of HAD functions. The figure is
based on a figure from [2] but includes additional information
on the relation between validation triangles and behavior sets.

III. TYPES OF EVIDENCE GENERATED BY SIMULATION

Simulations are useful to generate evidence that a par-
ticular validation triangle is consistent. Consistency means
that the realization is able to fulfill its purpose on the
given context in the triangle. This evidence can be gained
by sampling scenarios (test cases) from a test space (rep-
resentation of context) and using them to evaluate a test
object (representation of realization) by using a test metric
(checks the fulfillment of the purpose for the context). A
more detailed view on the procedure for simulations can be
found in Sec. V. We now discuss two types of evidence:

A. System knowledge

The aim is to simulate as many diverse test cases as
possible to get confidence in the system’s realization. As
a result, one can improve the overall understanding of the
system’s behavior. The application of microscopic metrics
(see Sec. VI-E) allows infering this system knowledge.

B. Statistical evidence

The aim is to derive statistical evidence about the ap-
pearance of errors arising in the triangle of a HAD system.
Statistical evidence should allow assessing the influence of
HAD systems on real traffic. That means, these statements
could for example allow showing that an automated car is
statistically as save as a human driver. Macroscopic metrics
(see Sec. VI-E) are needed to compute statistical evidence.

IV. USAGE OF SIMULATION-BASED METHODS FOR THE
ACCOMPLISHMENT OF VALIDATION TASKS IN THE

3-CIRCLES MODEL

In the following, it shall be assessed how simulations
for validation can be classified into the 3-circles model.

Therefore, we discuss which parts of the 3-circles model are
addressed by recent research. Analyzing the model, there
are at least three obvious types of validation tasks, which
can contribute to the proof of validity of a system:
• verification (SB =⇒ IB)
• validation of the specification (RB=SB)
• validation of the implementation (RB=IB)
Tab. I shows a summary of the following discussion

regarding the simulation-based fulfillment of validation tasks.

A. Verification (SB =⇒ IB)

The process of verification is a well-known problem in
the development of complex systems. It aims to check
whether the developed and implemented system fulfills the
demands of its explicit specification. As a simulation-based
example, Bühler et al. [3] demonstrate a hardware-in-the-
loop simulation of an automated parking system. It is tested
if the system can solve the problem of parking in a variety
of well-specified rectangular parking spaces.

Formally, such a simulation tests the consistency of the
triangle of implemented realization, “expected to be relevant”
context and intended purpose. The test object is a model r∗

of the implemented realization. It should be expressed by
very low-level models (the modeling needs assumptions c∗

and p∗ about the effective context and effective purpose) of
the ego vehicle or by using as much of the final ego-vehicle
hardware as possible. Especially hardware/software/vehicle-
in-the-loop simulations seem to be appropriate. For the test
space, a model obtained from the “expected to be relevant”
context is needed. The test metric of the simulation can be
derived by mainly considering the “expected to be relevant”
context and the intended purpose.

There are some challenges inherent to the simulations:
• Low-level modeling of the implemented realization is

very demanding and complicated. Full reality can not
be modeled due to the system’s complexity and its
emergent behavior. If simulation models are replaced by
hardware the results become more realistic. However,
the execution speed will slow down. At worst, the
execution speed can be limited to real-time (e.g. for
VeHiL simulations [4]). Consequently, depending on the
amount of used hardware, r∗ will include a shift from
reality and create a behavior set IBbias; see Fig. 2a.

• The execution of a simulation can be very time-
consuming depending on the complexity and the com-
putational costs of the low-level models.

• Usually the test space can not be sampled exhaustively.
An intelligent sampling method is required.

A valid simulation generates evidence on the cut-set 4 and
the area 7 (see Fig. 1).

B. Validation of the specification (RB=SB)

The validation of the specification tries to show that
the explicitly expressed specification of a system meets
the (implicit) demands of the stakeholders. In other words,
it must be shown that a specified system fulfills the de-
mands of∞-complex reality. In the examples [5]–[8] models



TABLE I: Summary of validation tasks and description of the respective simulation properties.

Task Test object Test space Test metric derived from Prerequisites for the
validity of the simulations

verification
(SB =⇒ IB, Sec. IV-A)

model r∗ of the
implem. realization

model of the
“expected to be relevant”
context

“expected to be relevant”
context and
intended purpose

r∗ ≈ implemented realization

validation of specification
(RB=SB, Sec. IV-B)

model of the
specified realization

model c′ of the
∞-complex context

model c′ of the ∞-
complex context and model
p′ of aimed purpose

c′ ≈ ∞− complex context,
p′ ≈ aimed purpose

validation of implementation
(RB=IB, Sec. IV-C)

model r∗ of the
implem. realization

model c′ of the
∞-complex context

model c′ of the ∞-
complex context and model
p′ of aimed purpose

c′ ≈ ∞− complex context,
p′ ≈ aimed purpose,
r∗ ≈ implemented realization

consistency of specification
(Sec. IV-E)

model of the
specified realization

model of the
“expected to be relevant”
context

“expected to be relevant”
context and
intended purpose

—

RB

IBbias

IB SB

(a)

RB

RBbias

IB SB

(b)

Fig. 2: (a): The model r∗ (and c∗, p∗) uses assumptions and
thereby does not exactly represent IB, but a new set IBbias.
Therefore, a lot of new cut sets appear. To handle this cut-
sets it is important to check if the difference of IBbias and
IB is small enough. (b): Same argumentation also holds for
RBbias caused by c′, p′ (and r′). For reasons of clarity and
comprehensibility, the sets are drawn into separate figures.

for the specified realization, which are given by simple
mathematical/control theoretical expressions (what we grasp
as specifications since they are high level statements), are
checked against test cases (context model).

In a more formal description, these simulations are gener-
ating evidence that the validation triangle of specified real-
ization,∞-complex context and aimed purpose is consistent.
The test object is defined by a model of specified realization,
the test space is given by a model c′ of the ∞-complex
context and the test metric is derived by c′ and a model p′

of the aimed purpose, compare Tab. I. Since it is unlikely,
that the ∞-complex context and the related purpose can
be defined explicitly and complete, assumptions might be
necessary for obtaining c′ and p′. Due to the interdependency
in the triangles also a model r′ of the required realization is
(implicitly) assumed during the modeling process. [9]–[14]
give examples for this modeling process (especially for c′).

The validation of the specification contains challenges:
• It might be hard to reach a satisfying level of accuracy

and completeness for c′ and p′: It is not expected for
c′ to describe the ∞-complex context, but a biased
context cbias. The same applies to p′ ( =⇒ pbias). The

inexact modeling causes a new set RBbias in the 3-
circles model, see Fig. 2b.

• Lots of data might be necessary to create c′ and p′ which
implies large measurement efforts.

• The execution of the simulation probably will be very
time-consuming due to the complexity of c′ and p′.

• It might be impossible to sample the test space exhaus-
tively. An efficient sampling method is essential.

• The definition of a test metric to evaluate the results of
the simulation is demanding since it must be derived
from RB and therefore must handle the open context
challenge and use as few assumption as possible.

The simulations might create confidence that the cut-
sets 2, 6 and the areas 1, 7 are small. Besides, it might
be beneficial to use additional methods to show that the
“expected to be relevant” context and the intended purpose
are well specified, that means that they are “close enough”
to the implicit ∞-complex context and aimed purpose.

C. Validation of implementation (RB=IB)
For classical validation, the implemented system must ac-

complish the (implicit) needs of its stakeholders. Therefore,
the system implementation is compared to the demands of
reality as given in RB. By way of example, O’Kelly et al.
[15] have implemented a black box framework which should
in principle be able to test an entire automated function
against a context learned from real world data. Schmidt
[17] proposes a framework for HiL-testing of camera-based
functions. [18]–[20] propose concepts for the validation of
the implementation by incorporating a HAD function in a
car. This implemented HAD function passively analyzes the
scenarios the car experiences. The open-loop of the analysis
of the scenarios is closed using offline simulations.

These types of simulations aim to show the consistency of
the triangle of implemented realization, ∞-complex context
and aimed purpose. The test object, test space and test metric
have to be chosen accordingly; see Tab. I.

For the simulation a combination of challenges from
Sec. IV-B and Sec. IV-A arises:
• challenges arising from models c′ and p′; see Sec. IV-B.
• challenges corresponding to r∗; see Sec. IV-A.

A valid simulation should generate evidence on the cut-sets
4, 6 and the areas 1, 5.



D. Example: automated emergency braking (AEB)

The validation tasks are illustrated by an AEB which is
a part of an automated vehicle. In its RB the system shall
prevent collisions with other traffic participants on highways.

For an example of SB =⇒ IB, we specify the AEB
to prevent collisions with a predecessor vehicle (intended
purpose) on straight highways containing exactly one pre-
decessor vehicle besides the ego vehicle (test space). It can
be assumed that the properties of these specified scenarios
are limited, e.g. assume −5 m

s2 to 5 m
s2 to be the range of

the acceleration of the predecessor. For the simulation one
could draw synthetic scenarios from this specified test space.
A possible test metric is the time to collision (TTC) between
the ego vehicle and the predecessor vehicle. A VeHiL setup
might give the test object. The simulations give us evidence
about the errors of r∗ within the specified test space. Exem-
plarily, Berger et al. [21] executed similar simulations to test
AEB functions in the well specified context of NCAP tests.

The previous example could not give us any hints about
the accurateness of the specification itself. An example of
RB = SB can show how to get these hints. For that, we
must add a specified realization consistent with the specified
test space and intended purpose: e.g. decelerate the vehicle
maximally for TTC < 1 s and keep its velocity for TTC
≥ 1 s. The test space (c′) on which we test, might be modeled
by directly sampling from a sufficiently large dataset or by
fitting a model (e.g. by the use of machine learning) to
the data. By sampling from the test space, one can detect
possible errors of the specified realization which do not occur
in the specified test space but on its outside, e.g. at curved
highway sections. This hints at an inaccurate specification.

For an example of RB = IB the simulations can be
executed by using the same test space and metric as for
RB = SB. For the low-level test object we might again use
a VeHiL system. This gives hints if the implemented system
works for all parts of reality described by c′ and p′.

E. Discussion and further approaches

Fig. 3 summarizes the discussed tasks in two validation
task groups. Additional to the already discussed tasks, a
task to show the consistency of the specification is included.
The reason is, that specifications of complex systems can
become quite complicated. Therefore simulations showing
the consistency of the specification could be helpful. Ev-
idence to this consistency could be generated by showing
that the elements of the specification triangle (“expected to be
relevant” context, intended purpose and specified realization)
are in a sensible interdependent relationship.

The blue task group and the green task in Fig. 3 should
include a certain degree of redundancy since both should
be able to generate evidence of the equivalence of the
implemented and the required behavior. However, by the
application of the blue group more insights into the system
and its behavior could become possible, e.g. the possible
existence of specification-related cut-set 2 and area 7 would
be neglected when only using RB=IB. Especially cut-set 2
could become dangerous, since its behavior was implemented

RB SB IB

consistency of specification
create

specification

validation of
specification

(RB=SB)

create
implementation

verification
(SB =⇒ IB)

direct validation (IB=RB)

Fig. 3: Two validation task groups exist: The blue marked
group can be applied during the development process,
whereas the green, dashed group can be applied afterwards.
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Fig. 4: Simulation-based procedure for validation. Simulation
runs are conducted until a stopping criterion is fulfilled. This
stopping criterion could be a statement about the complete-
ness of the tested space or a statement about accuracy of a
statistical result.

correctly by chance and not by design. Hence, the behavior
in cut-set 2 was not understood explicitly and could become
invalid unnoticedly.

V. CLASSIFICATION OF SIMULATION CONCEPTS

In this section we want to highlight the basic principles of
the simulations which can be used to show the consistency of
validation triangles as described above. The basic procedure
is illustrated in Fig. 4. A sampling method is used to create
test cases by sampling the parameter values of the test space.
Test cases are then used to simulate the response of the
test object during the simulation execution. The response is
evaluated by using a microscopic test metric. If a stopping
criterion is met, a total final statement on all simulation
runs is calculated and the simulation is aborted. The total
statement is calculated using a macroscopic test metric.
Otherwise, a new test case is sampled and another simulation
run is conducted. Due to the emergent behavior of complex
HAD systems, it might be beneficial to solve the validation
task at system-level. Thereby, the following study considers
the properties of system-level simulations. More information
to test metrics can be found in Sec. VI-E.



A. Properties of simulation run

Dependent on the test object and the validation aims,
several properties of a simulation run can be adjusted.

1) Granularity: One of the most important properties of
a simulation is its granularity. One can distinguish between
macroscopic, microscopic and sub-microscopic simulations.
For the validation of HAD functions, sub-microscopic sim-
ulations are preferable since they consider vehicle sub-
structures (e.g. single hardware components). In contrast,
macroscopic simulations only consider thermodynamical
traffic flow variables and microscopic simulations consider
single vehicles but not the vehicle sub-structures.

2) Closed loop vs. open loop: Another important decision
is whether a simulation is executed in a closed or an
open loop. Within open loop simulations, the decisions and
behavior of the test object do not affect its surrounding. An
example is the (augmented) replay of measured data [22].
Since a HAD function is very complex and heavily influences
its surrounding vehicles, it seems to be preferable to execute
a validation simulation in a closed loop manner.

3) Inclusion of reality in simulations: As already ex-
plained in the former section, it can be quite demanding
to model the complex system of the test object. Thereby,
it can be beneficial to use parts of a real vehicle. This
is denoted as x-in-the-loop procedure. Within x-in-the-loop
methods, parts of simulation models are replaced by reality.
An example is the Hardware-in the-loop (HiL) technique,
which for example replaces (parts of) the HAD function-
model by real software running on a real control unit. Of
course, this replacement can be done on different scales.
A Vehicle-Hardware-in-the-loop (VeHil) approach would go
further and replace the whole test object including its sensors
and near surrounding vehicles by reality [4]. Basically, the
more models are replaced the better the simulation results
become. However, simulation speed will (strongly) decrease
with an increasing amount of reality.

B. Properties of test case generation

Besides the simulation run itself also the properties of the
sampling method and the test space must be chosen carefully.
A high-level categorization of recent work can roughly be
done by using two axes: the type of model used to describe
the test space and the basic principle of sampling.

1) Test space model: For system-level simulations, the
test space mainly includes the surrounding of a HAD vehicle.
Recent research on modeling the test space of system-
level simulations can be distinguished into the categories of
generic modeling and maneuver-based modeling.

A maneuver-based model describes a particular type of
traffic maneuver, e.g. models for car following scenarios [5],
[23], cut-in scenarios [6], [7], [24], lane departure events
[25] or parking scenarios [3]. As an advantage, such a
model does not have to be generic which makes it easier
to design. Additionally, such models need less parameters
and they usually have an expressive meaning. However it
is disadvantageous, that an extra model is needed for each

maneuver (e.g. the ∞-complex context would not be repre-
sented by one model c′, but by a set of models c′ =

⋃
c′i).

Since the open context reality contains a lot of different
scenarios, the number of needed models is high. Therefore,
a scenario catalog, which includes the relevant scenarios, is
required [23] for validation. It is very time-consuming or
even impossible to generate a complete scenario catalog of an
open context system. Basic approaches to scenario catalogs
can be found in [7], [8]. There are data-driven methods for
scenario catalogs as in [26], [27] and formal approaches, e.g.
based on ontologies [28], [29].

A generic approach towards test space modeling is not
limited to the description of a specific maneuver. That
means one does not need a scenario catalog and should be
able to obtain scenarios of different maneuver type by just
sampling from the model’s parameter space. The disadvan-
tages of generic modeling include parameter explosion, less
expressive parameters and the difficulty to be accurate and
complete on the∞-complex context (maybe impossible). [9],
[10], [12], [15], [16] give examples for generic modeling
techniques.

2) Sampling strategies: A sampling strategy is needed to
make sure that the results of the simulation have a sensible
meaning and are calculated efficiently. For open context
systems it is usually impossible to sample exhaustively. This
fact strongly increases the demands on the sampling scheme.
Additionally, it is important to develop a method to handle
continuous parameters (e.g. discretize them) and to find valid
parameter ranges. In literature, there are two approaches to
sample: coverage-based and statistical sampling.

Coverage-based sampling is based on the principle to
sample as many different parameter sets as possible. This is
useful for getting insights into the HAD system and exploring
the interactions with its surrounding. It is possible to sample
evenly distributed over the whole test space or to use
optimization methods to just sample interesting parameter
configurations. Recent work on these principles is given in
Sec. VI-C.2. It is often hard to define a stopping criterion
for coverage-based sampling since exhaustive sampling is
impossible and a metric, which determines when “enough”
or the “relevant” parameter values have been checked, is
difficult to find [30]. When using suitable coverage-based
sampling methods it is possible to get system knowledge
and statistical evidence about the test object [7].

Statistical sampling tries to find statistical evidence about
the test object. Such evidence could be the probability
of an accident in real traffic. Statistical sampling methods
mostly sample in highly probable areas of the parameter
space. These areas usually are understood quite good. That
means, the possibility to get new insights into the system is
reduced. Techniques to mitigate this challenge are given in
Sec. VI-C.2. A stopping criterion can be defined based on
the variance of the statistical results of the simulation [31].

VI. IMPLEMENTATION

This section gives an overview about the parts, elements
and methods needed for the efficient implementation of the



validation concepts which were given in Sec. V.

A. Basis for model creation

In order to create models of the test object or the test
space, it is necessary to have a source to deduce the models
from. This source can be data-driven or driven by (human)
knowledge. For the search of statistical evidence a data-
driven test space model approach is essential. The allowed
level of abstractness (objects lists, raw data, ...) of the
dataset is dependent on the scope of the simulations. For the
validation of an open context system it is a huge challenge
to obtain a dataset which is as complete as possible.

B. On the representation of models

The mathematical models are fundamentally separated into
black-box and white-box models. Some evaluation methods
may need a white-box model. For mathematical purposes and
flexibility, the test object and the test space are divided into
several sub-models.

1) Modeling of test object: The test-object model is
divided into several sub-models. On the one hand, there are
models for the sensor hardware in the automated vehicle.
They can be quite complicated depending on their accuracy.
In our previous work [32] we distinguish physical low-
level models and phenomenological high-level models. Of
course, one could also use sensor hardware in a X-in-the-loop
procedure. Additionally, models for electronic control units
and models for the vehicle dynamics such as steering and
braking are needed. Especially for vehicle dynamics there
exists a wide variety of models, starting with simple single-
track models which are improved by more accurate and
more complicated multi-track ones [33]. It is also important
to model the functional chain of the HAD function which
shall be tested. As an alternative, one could use its software
code/hardware components (see Sec. V-A.3).

2) Modeling of test space: The open context surrounding
of the test object is complex and contains a lot of different
entities. A categorization of surrounding entities into 4
hierarchic classes is given by Schuldt [30].

Since the validation of HAD functions benefits from a
closed loop simulation, the surrounding model often sepa-
rates into static scene models [9] and behavior models [13]
which return the dynamics of dynamic environment objects.
Some attempts also use hybrid models unifying scene and
behavior models. However, such hybrid approaches often are
not as generic and flexible as the separated approach, e.g. [5]
only models a particular scenario.

C. Methods for efficient and effective test case generation

It is of utmost importance for simulations that the test case
generation (see Fig. 4) is done in an effective and efficient
manner.

1) Methods for test space generation: A major step in
implementing the test case generation is to find a good way to
parameterize the test space. Firstly, that includes the selection
of features/parameters [34]. Secondly, parameter ranges and
distributions to sample from must be defined. Thirdly, a good

discretization for continuous parameters or another way to
handle the continuum must be implemented. In the simplest
case equidistant bins are used [9]. [35] presents a more
elaborate discretization scheme for Bayesian networks. A
high-level discussion of the generation of the test space and
the inherent demands is given by Schuldt [30].

2) Methods for efficient sampling: Additionally, a method
for efficient and effective sampling is needed. The main
challenge is that for open context systems an exhaustive
sampling becomes impossible. Hence, a strategy to select
the “relevant” test cases is needed. Various aspects of the
sampling methods given in Sec. V-B.2 are discussed below:

For the statistical sampling there is the challenge to find
a good statistical model describing the scenario distribution.
In general, one can distinguish statistical models relying on a
particular parametric family of probability distributions and
statistical models working with distribution-free methods.

Advantages of distribution-based statistical models are,
that they often show few, but expressive parameters and
that the models’ output is comprehensible. The disadvantage
is that the structure of such models is fixed and thereby
there are problems using them to represent an open context.
Distribution-based behavior models often are split up into
models for lane-following [13], [14], [36], lane-change [37],
[38] and gap acceptance. In [39], these models and some of
their main parameters are discussed.

Distribution-free statistical models are more flexible in
their structure and therefore might better handle the open
context of a HAD function. A comparison of the performance
of distribution-based and distribution-free models for vehicle
speed prediction is given in [40]. Distribution-free models
often contain a larger number of parameters with a non-
expressive meaning. Examples for distribution-free models
are graphical models as Bayesian networks [9], [11], [16],
[41], factor graphs [10], tree diagrams [11] and neuronal
networks [42]. Models based on generative adversarial tech-
niques [12] are used to solve the problem of cascading errors
which appear when supervised methods are used to learn
sequential decision processes like behavior models.

Methods to increase the efficiency of the statistical sam-
pling approach are importance sampling [5], [6], [15], [23],
[31] and a Markow Chain Monte Carlo method in conjunc-
tion with the subset simulation method [43]. Additionally,
surrogate functions based on Kriging models have been
proposed to further enhance importance sampling [44].

The coverage-based sampling approach can be realized
by a large bunch of sampling strategies. An overview about
suitable combinatorial methods and coverage criteria, es-
pecially for the field of software testing, can be found in
[45]. Schuldt [30] discusses the application of combinato-
rial methods in association with equivalence classes and
boundary value analysis. A combinatorial t-wise sampling
strategy is applied in [46]. Of course the coverage-based
approach can also be realized by only sampling “interesting”
parameter values. There are optimization-based [47]–[49],
learning-based [50] and search-based [51], [52] methods to
find error-prone regions of the parameter space, methods to



TABLE II: Specification of safety metrics based on [56].

Metrics for accident severity Metrics for criticality

m
ic

ro
sc

op
ic • physical metrics

(collision speed, ...)
• physiological metrics

(injury severity [5], ...)
• economic metrics

• physical metrics
(PET [57], WTTC [58],
TTX (TTC [59], TTB
[60], ...), headway, DCE
[61], ...)

Metrics on accident cases Metrics on all cases

m
ac

ro
sc

op
ic

• injury rate [5]
• fatality rate
• ...

• accident rate [54]
• prevention rate
• conflict rate [5]
• ...

find feature interaction failures [53], methods to find the
safety boundaries of error-prone regions [54] and methods to
vary recorded scenes [22]. Additionally. there are approaches
to derive test cases from test models [55].

D. Model validation

As already explained in Sec. IV-B it is important to vali-
date that c′ ≈ ∞-complex context and p′ ≈ aimed purpose.
This consists of the problems of validating accurateness and
completeness, which requires the definition of metrics.

For the validation of accurateness, methods based on
comparisons of “emergent” behavior [9], [11], [12], com-
parisons of parameter distributions, e.g. by Kullback-Leibler
divergence [12], [42], cross-validated likelihoods [11], root
mean squared error (RMSE) [40], [41] and mean absolute
error (MAE) [40] are used. These metrics have in common
that they compare the learned models with datasets.

For the validation of completeness metrics directly evalu-
ating the completeness off datasets are needed.

E. Evaluation

Simulations are evaluated by the use of test metrics.
Helmer [56] has introduced a classification for metrics which
distinguishes between microscopic and macroscopic metrics
as can be seen in Tab. II. In addition to safety, metrics
evaluating other types of effects of automated vehicles are
required, e.g. traffic quality metrics as discussed in [60].

VII. CONCLUSION

We recapitulated the 3-circles model and analyzed parts
which possibly can be handled by simulations. We discussed
the types of evidence which can be generated by simulations
and saw that simulations addressing validation tasks (e.g.
RB=SB, RB=IB and SB =⇒ IB) possess diverse difficulties.
We also pointed out, that there are some prerequisites for the
simulations in the validation process which must be fulfilled
for the simulations to be valid (compare Tab. I).

Afterwards, we introduced a categorization of simulation
concepts depending on the properties of the simulation run
and test case generation. The main axis of the properties of
the simulation run is the inclusion of reality, whereas the test
case generation must be specified along the two axes of test
space model and sampling strategy. We finished the paper
with an overview about recent research on methods needed
for an efficient implementation of test case generation.

Despite extensive research, there is still a bunch of un-
solved questions: Metrics evaluating the completeness of a
dataset are needed. Additionally, there needs to be done more
work on metrics evaluating the accurateness of a fit of the
models (c′ and p′) to the dataset. Further work needs to be
done on metrics which evaluate the results of simulations.
A related problem is the definition of stopping criteria for
sampling methods. Further research on the sampling methods
themselves must be conducted. Another open problem is the
modeling of complex system behavior (r∗) since there is a
trade-off between inclusion of reality and simulation speed.
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[40] S. Lefèvre, C. Sun, R. Bajcsy and C. Laugier, “Comparison of para-
metric and non-parametric approaches for vehicle speed prediction,”
in American Control Conference, Portland, 2014, pp. 3494-3499.

[41] T. Gindele, S. Brechtel and R. Dillmann, “Learning Driver Behavior
Models from Traffic Observations for Decision Making and Planning,”
in IEEE Intelligent Transportation Systems Magazine, vol. 7, no. 1,
Spring 2015, pp. 69-79.

[42] J. Morton, T. A. Wheeler and M. J. Kochenderfer, “Analysis of Recur-
rent Neural Networks for Probabilistic Modeling of Driver Behavior,”
in IEEE Transactions on Intelligent Transportation Systems, vol. 18,
no. 5, May 2017, pp. 1289-1298.

[43] S. Zhang, H. Peng, D. Zhao and H. E. Tseng, “Accelerated Evaluation
of Autonomous Vehicles in the Lane Change Scenario Based on Subset
Simulation Technique,” in 21st International Conference on Intelligent
Transportation Systems, Maui, 2018, pp. 3935-3940.

[44] Z. Huang, H. Lam and D. Zhao, ”Towards affordable on-track testing
for autonomous vehicle – A Kriging-based statistical approach,” in
IEEE 20th International Conference on Intelligent Transportation
Systems, Yokohama, 2017, pp. 1-6.

[45] M. Grindal, J. Offutt and S. F. Andler, “Combination testing strategies:
a survey,” in Softw. Test. Verif. Reliab., vol. 15, 2005, pp. 167-199.

[46] E. Rocklage, H. Kraft, A. Karatas and J. Seewig, “Automated scenario
generation for regression testing of autonomous vehicles,” in IEEE
20th International Conference on Intelligent Transportation Systems,
Yokohama, 2017, pp. 476-483.

[47] C. E. Tuncali, T. P. Pavlic and G. Fainekos, “Utilizing S-TaLiRo as
an automatic test generation framework for autonomous vehicles,”
in IEEE 19th International Conference on Intelligent Transportation
Systems, Rio de Janeiro, 2016, pp. 1470-1475.

[48] H. Beglerovic, M. Stolz and M. Horn, “Testing of autonomous
vehicles using surrogate models and stochastic optimization,” in IEEE
20th International Conference on Intelligent Transportation Systems,
Yokohama, 2017, pp. 1-6.

[49] M. Koren, S. Alsaif, R. Lee and M. J. Kochenderfer, “Adaptive
Stress Testing for Autonomous Vehicles,” in IEEE Intelligent Vehicles
Symposium, Changshu, 2018, pp. 1-7.

[50] I. R. Jenkins, L. O. Gee, A. Knauss, H. Yin and J. Schroeder,
“Accident Scenario Generation with Recurrent Neural Networks,” in
21st International Conference on Intelligent Transportation Systems ,
Maui, 2018, pp. 3340-3345.

[51] R. B. Abdessalem, S. Nejati, L. C. Briand and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search and
neural networks,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, New York, 2016, pp.
63-74.

[52] R. B. Abdessalem, S. Nejati, L. C. Briand and T. Stifter, “Testing
Vision-Based Control Systems Using Learnable Evolutionary Algo-
rithms,” in IEEE/ACM 40th International Conference on Software
Engineering, Gothenburg, 2018, pp. 1016-1026.

[53] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand and T. Stifter,
“Testing autonomous cars for feature interaction failures using many-
objective search,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, New York, 2018.

[54] J. Zhou and L. del Re, “Safety Verification Of ADAS By Collision-
free Boundary Searching Of A Parameterized Catalog,” in Annual
American Control Conference, Milwaukee, 2018, pp. 4790-4795.

[55] T. Hempen, S. Biank, W. Huber and C. Diedrich, “Model Based
Generation of Driving Scenarios,” in Intelligent Transport Systems –
From Research and Development to the Market Uptake, 2018, pp.
153–163.

[56] T. Helmer, “Development of a Methodology for the Evaluation of
Active Safety using the Example of Preventive Pedestrian Protection,”
PhD thesis, Technische Universitat Berlin, 2014.

[57] P. Nitsche, R. H. Welsh, A. Genser and P. D. Thomas, “A novel,
modular validation framework for collision avoidance of automated
vehicles at road junctions,” in 21st International Conference on
Intelligent Transportation Systems, Maui, 2018, pp. 90-97.

[58] W. Wachenfeld, P. Junietz, R. Wenzel and H. Winner, “The worst-
time-to-collision metric for situation identification,” in IEEE Intelligent
Vehicles Symposium , Gothenburg, 2016, pp. 729-734.

[59] J. C. Hayward, “Near-miss determination through use of a scale of
danger, ” in Highway Research Board, no. 384, 1972, pp. 24-34.

[60] S. Hallerbach, Y. Xia, U. Eberle and F. Koester, “Simulation-based
identification of critical scenarios for cooperative and automated
vehicles,” SAE Technical Paper, 2018.

[61] J. Eggert, “Predictive risk estimation for intelligent ADAS functions,”
in 17th International IEEE Conference on Intelligent Transportation
Systems, Qingdao, 2014, pp. 711-718.


	Introduction
	Validation triangle and 3-circles model
	Types of evidence generated by simulation
	System knowledge
	Statistical evidence

	Usage of simulation-based methods for the accomplishment of validation tasks in the 3-circles model
	Verification (SB -3mu IB)
	Validation of the specification (RB=SB)
	Validation of implementation (RB=IB)
	Example: automated emergency braking (AEB)
	Discussion and further approaches

	Classification of simulation concepts
	Properties of simulation run
	Granularity
	Closed loop vs. open loop
	Inclusion of reality in simulations

	Properties of test case generation
	Test space model
	Sampling strategies


	Implementation
	Basis for model creation
	On the representation of models
	Modeling of test object
	Modeling of test space

	Methods for efficient and effective test case generation
	Methods for test space generation
	Methods for efficient sampling

	Model validation
	Evaluation

	Conclusion
	References

