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Abstract— Vehicle motion models are employed in driver
assistance systems for tracking and prediction tasks. For
probabilistic decision making and uncertainty propagation, the
prediction’s inaccuracy is taken into account in the form of
process noise. This work estimates Gaussian process noise
models from measured vehicle trajectories using the expectation
maximisation (EM) algorithm. The method is exemplified and
the results evaluated for three commonly used motion models
based on a large-scale dataset. A novel closed-form adaptation
of the algorithm to a covariance matrix with Kronecker
product structure, as in models for translational motion, is
presented. The findings suggest that the longitudinal prediction
errors feature a non-Gaussian distribution but a reasonable
approximation is given by the estimated model.

I. INTRODUCTION

A. Motivation

Situation analysis for driver assistance functions requires
predicting the behaviour of traffic participants in the next few
seconds. Due to an incomplete and uncertain perception of
the environment, predictions are affected by uncertainty, see
Fig. 1. Probabilistic uncertainty models are hence crucial for
the design of sensors and decision making [1].

Besides the obvious cause of noisy sensor measurements,
the future behaviour of traffic participants is never certain.
Thus, modelling the uncertainty which is introduced by inac-
curate prediction models is necessary, which is the scope of
this work. Subsequently, the two sources of uncertainty can
be propagated to decision making algorithms, i.e. criticality
measures for collision avoidance systems, which has been
discussed in our previous contribution [2].

Valuable insight is obtained from models that can be ana-
lytically propagated, e.g. Gaussian distributions. This choice
requires compromises in the achievable modelling accuracy
but yields the benefit of understanding the general case,
whereas numerical propagation allows singular evaluations
for initial state and parameter values only [3].

Therefore, this work employs the expectation maximisa-
tion (EM) algorithm to estimate the parameters of Gaussian
vehicle motion models using a large-scale dataset of vehicle
trajectories (≈ 170 h of raw recordings). With a disjoint
dataset for evaluation, the predictions are evaluated in terms
of accuracy as well as congruence between the Gaussian
uncertainty model and the empirical error distribution for a
prediction horizon of up to tpred = 3 s.
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3J. Marius Zöllner is with Research Center for Information Technology
(FZI), 76131 Karlsruhe, Germany

Fig. 1: Using environment perception sensors, the observed
vehicle’s current motion is estimated and its future course
predicted. Uncertainty in the prediction arises from uncertain
estimates of the initial state and model deviations, i.e. process
noise. This work identifies Gaussian process noise models.

B. Related work

Prediction models have two main applications in the driver
assistance context, namely in object tracking and situation
interpretation. Hence, related works on evaluation and pa-
rameter estimation for these models are reported in both
areas. The difference is the time-span over which a prediction
is made, that is either a fraction of a second for the system
sampling time or multiple seconds for situation analysis.

For object tracking, e.g. using a Kalman filter, a number of
motion models with white Gaussian process noise are known
[4]. In order to make a sensible choice, the overall accuracy
of the tracking filter results can be evaluated. This is done
either in simulations [5] or based on real-world trajectories
[6]. For a meaningful evaluation of probabilistic models,
not only the accuracy of the mean trajectory but also the
reliability of the predicted uncertainty is studied here.

Concerning the choice of the process noise covariance, two
approaches can be differentiated. Either, the variance is se-
lected as an upper expected deviation between the model and
a true trajectory. When modelling vehicle behaviour, bounds
can be derived from the maximum acceleration capabilities
[7], [8]. In a tracking algorithm, such a conservative choice
minimises the risk of a track loss. For long-term predictions
though, large and barely conclusive covariance predictions
are a consequence because any physically possible trajec-
tory is enclosed. Alternatively, the expectation maximisation
principle can be used for an on-line estimation [9], [10].

Concerning prediction models for situation assessment,
a plethora of works exist on the design, parameter infer-
ence and evaluation [11]. For example, [12] proposes a
sophisticated Markovian model which incorporates multiple
semantic aspects such as intentions and interactions.

The focus of this contribution, though, is on uncertainty
propagation in a given function where simple, purely kine-
matic models are implicitly assumed. For example, common
criticality measures are currently based on the constant
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Fig. 2: The process noise covariance is estimated using the expectation maximisation algorithm, which is first introduced in
Sec. III and subsequently applied to our dataset in Sec. IV. The results are evaluated by comparing the empirical distribution
of the prediction errors to the obtained analytical uncertainty model in Sec. V.

acceleration (CA) model [13]. Deriving criticality algorithms
from more advanced models can improve the results [14],
which is however not the scope of this work.

From a methodological point of view, using the expecta-
tion maximisation principle [15] for model identification of
stochastic dynamic systems is known in many fields, e.g. in
the robotics domain [16], [17]. Concerning vehicle motion
models, similar analyses have to the best of the authors’
knowledge not been reported.

The scope of this work should not be confused though with
models of the car-following behaviour as used in microscopic
traffic simulations. There is a significant body of works on
model identification using naturalistic driving data, e.g. [18],
but these models concern the interactions of a driver with
a preceding vehicle. For a driver assistance system, this
information is however usually unknown as vehicles in front
of the observed one are occluded.

C. Contributions and outline

This work is organised as outlined in Fig. 2. The main
contribution is a data-driven approach for estimating Gaus-
sian process noise parameters for vehicle motion models
as is described in the problem formulation in Sec. II.
Sec. III comprises an introduction of the employed expecta-
tion maximisation algorithm. A novel theoretical contribution
presented in Sec. III-D is a closed-form adaptation of the
algorithm to a process noise covariance matrix given by
a Kronecker product with one known and unknown factor.
This structure arises in linear translational models, e.g. the
constant acceleration model.

Applying the EM-algorithm to large datasets may become
computationally and numerically challenging. Sec. IV-A dis-
cusses these aspects and compiles advice for practitioners
on commonly experienced issues. In order to carry out the
estimation on our set of vehicle trajectories measured by
exteroceptive sensors, several pre-processing steps are first
performed. Together with details on the employed dataset,
these are detailed in Sec. IV-B.

The assumption of Gaussian white noise processes is
commonly favoured in order to achieve simple, closed-form
solutions. A contribution of the evaluation in Sec. V is
to critically study the model’s validity using a large-scale

dataset of real-world trajectories.

II. PROBLEM FORMULATION

A. Model representation
A n-dimensional state vector x (t) ∈ Rn describes the

kinematic motion state, e.g. position, velocities, acceleration.
The motion dynamics are then given by a non-linear differ-
ential equation ẋ (t) = f (x (t)).

Given an initial state x (t0), one can solve the differential
equation and obtain a prediction x (t0 + T ) as [19]:

x (t0 + T ) = Φ (t0 + T, t0) x (t0) , (1a)

Φ (t, t0) = exp

(
t

∫
t0

F (τ) dτ

)
, F (t) := ∇x(t)f (x (t)) .

(1b)

Concerning the accuracy of this prediction, two kinds of
deviations can be differentiated [11]:
• Manoeuvre changes: Abrupt changes in the driven ma-

noeuvre, e.g. from straight driving to turning, can occur.
This may be expressed as an unknown, deterministic
input signal u (t) in ẋ (t) = f (x (t) ,u (t)).
As these changes are not included in the previous
motion state x (t) they can only be inferred on a higher
level of abstraction than the kinematic quantities, e.g.
from context information or driver intention estimation.

• Stochastic disturbances: The focus of this work is on
small perturbations that occur during the same driven
manoeuvre. For example, while driving along a straight
road the vehicle’s velocity can vary due to slopes.
It is hence assumed that no manoeuvre changes occur
during the considered prediction horizon. This assump-
tion is derived from the overall scope of our work
which is on collision avoidance systems for situations
with a high risk of an imminent collision. Thus, only
short-time predictions are considered with a prediction
horizon of up to 3 s.

The stochastic disturbances are modelled as additive white
Gaussian process noise w (t) ∈ RnS with time-invariant
power spectral density S and L ∈ Rn×nS :

ẋ (t) = f (x (t)) + Lw (t) ,

E
[
w (t) w (t′)

>
]

= Sδ (t− t′) .
(2)
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If S and a Gaussian estimate x̂ (t0) ∼ N (x (t0) ,Σx (t0))
with mean x (t0) and covariance Σx (t0) are known, the
covariance of the state prediction Σx (t0 + T ) is given to
first order as [19]:

Σx (t0 + T ) = Φ (t0 + T, t0) Σx (t0) Φ> (t0 + T, t0)

+ Q (t0 + T, t0) , (3a)

Q (t, t0) =

∫ t

t0

Φ (t, τ) LSL>Φ> (t, τ) dτ . (3b)

Therefore, the goal of this work can be summarised as
estimating S from recorded measurement data.

However, measurement data is obtained by sampling at
discrete points in time, hence we additionally have to intro-
duce the discrete-time equivalent of (2). We assume a con-
stant sampling time T and denote tk = k · T , xk := x (tk),
f (xk) := Φ (tk+1, tk) x (tk) and Qk := Q (tk+1, tk):

xk+1 = f (xk) + wk, cov (wk) = Qk . (4)

In general, Qk now depends on the sampling time T , the
spectral density S and the state xk due to (1b). For the
important special case of linear dynamics ẋ (t) = Fx (t), the
latter dependence vanishes and Q becomes time-invariant.

Note that the derivation of Qk using (3b) assumes that
a continuous-time noise process is sampled. Alternatively,
discrete-time noise inputs can be directly modelled, assuming
a constant amplitude and covariance Qk between two sam-
pling time instants [4], [20], [21]. This is a viable approach
if solely the discrete-time system is considered, e.g. in a
tracking filter, but not applicable to our case as the link to
the continuous-time prediction (3) is lost.

Moreover, five different representations are known for the
transformation from continuous to discrete time in non-linear
models [20]. The approach followed in this work is termed
discretised linearisation which is also employed in [3]. This
choice is supported by consistency to linear systems, where
the same equations are found as the exact propagation [19].

Lastly, the available measurement data usually comprises
a partial and uncertain representation yk ∈ Rm of the state
only. This is expressed by a non-linear measurement function
h (·) and additive white Gaussian noise vk ∼ N (0,Rk):

yk = h (xk) + vk . (5)

In this work, 2-D range measurements from a laser scanner
are used. Therefore, the measurements are formed by a linear
mapping h (xk) = Cxk from the state vector xk, where only
the Cartesian position is included in yk (m = 2).

B. Kinematic motion models
Motion models that are frequently used in ADAS applica-

tions [6] can be differentiated by their level of complexity:
• In terms of the order of time differentials which are

comprised in the state vector, e.g. velocity, acceleration,
jerk etc. Considering higher derivatives leads to more
unknown state variables. At the cost of increased state
estimation effort, higher fidelity is possible. Further-
more, either a Cartesian or polar representation of
velocity and acceleration may be beneficial [21].

• In terms of the dynamics: Models either assume purely
translational motion or take an additional rotation into
account (curvilinear models). The advantage of the
former is their linearity, at the cost of realism. Hence,
closed-form expressions for the exact estimation and
prediction of Gaussian states can be employed.

The differential equations of three commonly used models,
the linear constant velocity (CV) and constant acceleration
(CA) as well as the non-linear constant turn rate and accel-
eration (CTRA) model are summarised in Tab. I.

In general, it might be impossible to find closed-form
solutions for the state and uncertainty propagation from (1)-
(3). Fortunately, these models make well-known exceptions
and we refer to [3] and [6] for details.

C. Estimation of process noise parameters

If a time-series of the true states xk was known, one
could solve (4) for wk = xk+1 − f (xk) and obtain a
covariance estimate. In practice though, the estimation must
be conducted using noisy measurements yk. We assume that
e = 1, . . . , Nseq independent series with k = 1 . . . N sam-
ples each are available and denote these as Y :=

{
y

(e)
k

}
.1

Then, the stochastic system (4) and measurement model
(5) can be used to formulate the probability density function
p (Y|θ) of these measurement series. This density depends
on the unknown parameter θ, which e.g., defines the process
noise covariance.

According to the maximum likelihood principle, maximis-
ing the log-likelihood lY (θ) := log p (Y|θ) yields the most
likely parameter estimate that explains the observations:

θ̂ = arg max
θ

lY (θ) . (6)

However, this maximisation becomes very difficult in prac-
tice. An efficient, iterative approach is the EM-algorithm [15]
and will be introduced in the following section.

In [22], pedestrian dynamics are modelled and as an
alternative estimation method, Bayesian inference is favoured
over the maximum likelihood approach in order to avoid
overfitting. Extensive training and evaluation datasets will
be employed here to cope with this issue.

III. EXPECTATION MAXIMISATION ALGORITHM FOR
PROCESS NOISE COVARIANCE ESTIMATION

A. The EM-principle

The central idea is to reformulate lY (θ) using the states
X :=

{
x

(e)
k

}
as lY,X (θ) = log p (Y,X|θ). Since X is

unknown, the complete log-likelihood is unavailable. But,
given an estimate θ̂l, one can estimate the distribution of X
and find the expected log-likelihood (E-Step):

qθ̂l
(θ) = E [log p (Y,X|θ)] . (7)

1For notational convenience, it is assumed that the measurement time-
series are of equal lengthN . This is however not a restriction and the method
can be similarly derived for individual lengths Ne, e = 1, . . . , Nseq.
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TABLE I: Motion model differential equations.

Constant velocity (CV) Constant acceleration (CA) Constant turn rate and acceleration (CTRA)

 ẋ (t)v̇x (t)
ẏ (t)
v̇y (t)

 =

vx (t)
0

vy (t)
0

+

0 0
1 0
0 0
0 1

[wx (t)
wy (t)

]

ẋ (t)
v̇x (t)
ȧx (t)
ẏ (t)
v̇y (t)
ȧy (t)

 =


vx (t)
ax (t)

0
vy (t)
ay (t)
0

+


0 0
0 0
1 0
0 0
0 0
0 1


[
wx (t)
wy (t)

]

ẋ (t)
ẏ (t)
v̇ (t)

θ̇ (t)
ȧ (t)
ω̇ (t)

 =


v (t) cos (θ (t))
v (t) sin (θ (t))

a (t)
ω (t)
0
0

+


0 0
0 0
0 0
0 0
1 0
0 1


[
wa (t)
wω (t)

]

Instead of maximising lY,X (θ), a new estimate θ̂l+1 is thus
obtained from qθ̂l

(θ) (M-Step):

θ̂l+1 = arg max
θ

qθ̂l
(θ) . (8)

It can be shown that this iterative procedure of approximating
the unknown log-likelihood and refining the result with a
new estimate converges to the maximum likelihood estimate
(6) [15]. As convergence criterion, the difference in the
log-likelihood values from two subsequent iterations can be
compared to a threshold value ∆qmin.

One remarkable property is that both steps of the algorithm
can be efficiently performed for the (non-) linear Gaussian
systems that are considered here. The following outline is a
brief summary of the derivations found, e.g. in [16], [23].

B. E-Step

The goal is to firstly estimate the distribution p (X) from
Y and then calculate the expectation (7).

Provided that an estimate of Q̂l is known, the Extended
Kalman smoother (EKS) algorithm can be applied to obtain
a Gaussian estimate of the joint densities p

(
x

(e)
k ,x

(e)
k−1

)
,

k = 2, . . . , N for each time-series. Due to the Markovian
assumption, this is a full description of p (X). Basically, the
EKS is a generalisation of the Extended Kalman filter to the
full measurement sequence in order to obtain the estimate
x̂

(e)
k|N with covariances Σ

(e)
k|N and Σ

(e)
k,k−1|N . The recursive

equations of the algorithm are given e.g. in [24].
In order to take the expectation in (7), a linearisation of

the state transition function f (xk) around x̂
(e)
k|N is performed

[16]. The Jacobian is denoted as A
(e)
k = ∇xf (xk). In

contrast to numerical integration, e.g. [25], this yields a
closed-form expression for qQ̂l

(Q) up to a constant:

qQ̂l
(Q) = −1

2
Nseq (N − 1) log det (Q)− 1

2
tr
(
Q−1M

)
,

(9a)

where M =

Nseq∑
e=1

N∑
k=2

M
(e)
k ,

M
(e)
k =

[
−A

(e)
k−1 In×n

] [ Σ
(e)
k−1|N Σ

(e)>
k,k−1|N

Σ
(e)
k,k−1|N Σ

(e)
k|N

] [
·
]>

+
(
x̂

(e)
k|N − f

(
x̂

(e)
k−1|N

))(
·
)>

. (9b)

C. M-Step

The objective is now to maximise the scalar expected log-
likelihood qQ̂l

(Q) from (9a) with respect to Q. Employing
matrix differentials [26], it follows that:

∂

∂Q
qQ̂l

(Q) = −1

2
Nseq (N − 1) Q−1 +

1

2
Q−1M>Q−1 .

(10)
Thus, one obtains the result of the maximisation step [16]:

Q̂l+1 =
1

Nseq (N − 1)
M> . (11)

Note that retrieving a point estimate only ignores valuable
information that is contained in the data and likelihood
function. Confidence (or standard error) intervals can be
calculated to obtain a more informed view.

One approach to find such intervals is built on the asymp-
totic Gaussianity of maximum likelihood estimates, i.e. θ̂ ∼
N
(
θ,I−1

Y (θ)
)
. The information matrix IY (θ) is given by

the negative Hessian of the log-likelihood:

IY (θ) = −E
[
∇θ∇>θ log p (Y|θ)

]
. (12)

Because the likelihood of the complete data is unavailable,
the expected log-likelihood qθ̂l

(θ) at the time of conver-
gence of the EM-algorithm is used instead [27]. Explicit
expressions for the EM-algorithm are contained in [28].

D. Covariance matrix with Kronecker product structure

In the previous section, an estimate of the full n × n
dimensional Q has been obtained. For the linear translational
models from Sec. II-B though, this process noise covariance
can be decomposed in a known part and an unknown, lower-
dimensional one, i.e. the spectral density S of the continuous-
time noise. For instance, the discretisation (3b) for the CV
model with S = diag

([
Sx Sy

])
reads:

Q (tk+1, tk) =


1
3T

3Sx
1
2T

2Sx 0 0
1
2T

2Sx TSx 0 0
0 0 1

3T
3Sy

1
2T

2Sy

0 0 1
2T

2Sy TSy


= S⊗Q1,with Q1 :=

[
1
3T

3 1
2T

2

1
2T

2 T

]
. (13)

Exploiting that the nQ × nQ dimensional Q1 is known in
order to solely estimate the nS × nS dimensional S has
to the best of the authors’ knowledge not been exemplified
for the EM-algorithm. Related derivations exist though for
covariance estimation of stationary time-series, e.g. [29],
[30]. In the following, a generic closed-form solution to the
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estimation of S will be derived, that is a modification of the
M-Step from Sec. III-C.

At first, the relation (13) is inserted into (9a) and thus the
expected log-likelihood qŜl

(S) is obtained. Then, instead of
(10), one has the following derivative with respect to S:

∂

∂S
qŜl

(S) = (14)

− 1

2
Nseq (N − 1)nQS−1 − 1

2

∂

∂S
tr
((

S−1 ⊗Q−1
1

)
M
)
.

In order to solve for S, (14) is reformulated. This is done
using an abbreviation for the inverse of Q1, namely Q̃ij :=[
Q−1

1

]
ij

. Moreover, we introduce the nS×nS matrix M̃
(j,i)

whose elements are taken from M at a regular pattern:

M̃
(j,i)

=
[
Mj+(u−1)nQ, i+(v−1)nQ

]
u=1...nS
v=1...nS

. (15)

With these notations, one can write

tr
((

S−1 ⊗Q−1
1

)
M
)

=

nQ∑
i=1

nQ∑
j=1

Q̃ijtr
(
S−1M̃

(j,i)
)

(16)

and after differentiation in (14) obtains the following estimate

Ŝl+1 =
1

Nseq (N − 1)nQ

 nQ∑
i=1

nQ∑
j=1

Q̃ijM̃
(j,i)

> . (17)

IV. APPLICATION

A. Implementation of the EM-algorithm

Two aspects relevant for the implementation of the EM-
algorithm will be briefly discussed. Firstly, each iteration
of the E-Step includes a Kalman smoother run and hence
computationally expensive matrix inversions. It is proposed
in [31] to parallelise the E-Step and thus calculate M

(e)
k in

(9b) independently for each sequence e.
Another suggestion leverages that for linear, time-invariant

systems, the gain and covariance matrices converge to sta-
tionary values. These can therefore be pre-computed by
numerically solving an algebraic Riccati equation [31].

An approach to reduce the number of iterations is to use an
update rule with a better rate of convergence in the M-Step,
e.g. a Newton-type scheme as described in [32].

Secondly, numerical robustness is concerned. Due to the
iterative nature of the algorithm, round-off errors may ac-
cumulate. This can lead to negative definite estimates of a
covariance matrix and divergence of the algorithm [23]. The
numerical properties may be improved as follows:
• E-Step: A robust implementation of the Kalman

smoother equations such as the square root form [23]
can be used. Thus, it is ensured that the estimates Σ

(e)
k ,

Σ
(e)
k,k−1 are always positive definite.

• M-Step: The estimate of Q in (11) is based on the matrix
M. For notational convenience, the calculation of the
individual M

(e)
k in (9b) is often explicitly written as

additions and subtractions of matrices, e.g. [17], [31].
In order to avoid a potential loss of positivity due to

round-off errors, [23] proposes an implementation based
on Cholesky factorisations instead. Denote

Σ̃ = chol

([
Σ

(e)
k−1|N Σ

(e)>
k,k−1|N

Σ
(e)
k,k−1|N Σ

(e)
k|N

])
(18)

and Γ
(e)
k =

[
−A

(e)
k−1 In×n

]
Σ̃
>

, so that

M
(e)
k = ΓΓ> +

(
x̂

(e)
k|N − f

(
x̂

(e)
k−1|N

))(
·
)>

(19)

is always positive definite.

B. Trajectory dataset and pre-processing

For the professed goal to determine the deviation between
predictive models and recorded trajectories, two ways to
acquire the necessary data can be taken into consideration.

The first is to equip the ego vehicle with recording de-
vices with which the required CAN-signals can be captured.
Advantages of this method are the low efforts concerning
measuring instruments and the generation of precise data.
The drawback is a lack of diversity in vehicles and driving
styles as only one car and driver is recorded at a time.

Therefore, a second approach was favoured. Both the
CAN-data of the ego vehicle and the positions and motions
of objects in the vehicle’s environment are measured. For
the detection of the surrounding objects, the ego vehicle was
additionally provided with a laser scanner. Hence, variations
caused by different driving styles and vehicles are included in
the dataset, which comprises ≈ 170 h of raw data. However,
several preprocessing steps have to be performed on the
exteroceptive measurements, which are explained in the
following paragraphs.

a) Filtering: Detections which do not represent road
users, like traffic signs or pedestrians, have to be filtered
out of the measured objects. Employing the results of a
classifier built-in the laser scanner, all recordings apart from
cars, trucks and motorcycles are sorted out.

b) Transformation to ground-fixed coordinates: Using
the recorded CAN-data for velocity, acceleration and yaw
rate, the trajectories of the ego vehicle in a ground-fixed
coordinate system can be calculated. Based on these, the
trajectories of the remaining objects can be determined from
the relative ranges between host and detected vehicles, which
are measured by the laser sensor.

c) Classification of road user types: In the next pro-
cessing step, vehicles are categorised into those driving on
the same lane, in the same direction and parked or oncoming
vehicles. For the sake of data precision, only vehicles driving
on the same lane are regarded for the evaluation purposes.
The motivation is that the subsequent manoeuvre classifica-
tion task can be based on the ego vehicle CAN-data, because
both the tracked vehicle and the following ego vehicle drive
along the same route but at different times.

d) Classification of manoeuvres: For the purpose of
an in-depth evaluation of the motion models, the recorded
trajectories of vehicles driving on the same lane are analysed
for certain frequently occurring manoeuvres (straight driving,
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Fig. 3: Visualisation of mean absolute velocity and duration
of straight driving episodes in the dataset.

TABLE II: Estimated parameter values

Model Parameter estimates

CV
Sx =

(
0.629m/s2

)2
s−1,

Sy =
(
0.472m/s2

)2
s−1

CA
Sx =

(
0.511m/s3

)2
s−1,

Sy =
(
0.570m/s3

)2
s−1

CTRA
Sa =

(
0.282m/s3

)2
s−1,

Sω =
(
1.6 ◦/s2

)2
s−1

curves or turning). Afterwards, the recordings are split at the
transitions between the manoeuvres.

The reason for this is that manoeuvre changes severely
violate the model’s crucial assumptions. Hence, without
further information about the driver’s intention any of the
considered models will fail to correctly predict a future
change which is not indicated in the current state.

e) Distribution into sequences: As a final processing
step the trajectories, which do now throughout represent
one manoeuvre type, are collected. Thus, three datasets
which contain episodes of straight driving, curves and turns
are obtained. Fig. 3 visualises the duration and velocity
distribution of the straight driving recordings. The overall
dataset is furthermore separated in an evenly chosen portion
(10%) for parameter estimation as well as the remaining
90% for evaluation purposes. Process noise parameters for
the motion models from Tab. I are then estimated, with the
eventual results shown in Tab. II.

For the CTRA model, further analyses on curved trajecto-
ries have been performed but are not shown here for brevity.

V. EVALUATION

The goal of the following evaluation is twofold:

1) Is the assumption of Gaussian white process noise
reasonable?

2) Are the obtained parameter values reasonable and gen-
eralise to other data than the ones used for estimation?

To address these questions, Nseq,eval = 14437 trajectory
sequences of straight driving with a duration of 6 s each are
first extracted from the evaluation dataset.

In order to calculate predictions with the three models
from Sec. II-B, an initial state value is required. Henceforth,
an Extended Kalman filter is applied to the first 3 s of
each trajectory and an estimate (x (t0) ,Σx (t0)) obtained.
The actual prediction x (t0 + tpred) is then calculated for
the subsequent tpred = 0 s . . . 3 s, from (1). A covariance
prediction Σx (t0 + tpred) is derived according to (3).

Reference values for comparison are obtained by applying
an Extended Kalman smoother to the overall recording.
As the longitudinal motion is of main interest for straight
trajectories, the longitudinal position and velocity errors
∆x (tpred) and ∆vx (tpred) are used for evaluation.

By calculating the errors for each trajectory at each time
step of the prediction horizon, empirical error distributions
are obtained. These are compared to the normal distributions
defined by the predicted covariances2 Σx (t0 + tpred).

The comparisons are visualised for three distinct times
in terms of the histograms in Fig. 4a and quantile-quantile
plots in Fig. 4b for position errors. Fig. 5 depicts the velocity
errors. Moreover, 68% percentile values of the absolute errors
over tpred are displayed in Fig. 6 and compared to the
corresponding 1σ-value of the predicted normal distribution.

As it is expected, the results exemplify how uncertainty
increases with prediction time. Comparing the CV and CA
model, slightly smaller errors are observed for the latter,
which concurs with the findings in [6].

The histograms and quantile-quantile plots show a non-
Gaussian error distribution. On the one hand, heavy tails
are observed, i.e. high deviations occur more frequently
than expected. This occurs for the CV and CTRA models
in Fig. 4b. On the other hand, the distribution peaks are
underestimated, most notable for the CA model as seen in
Fig. 4a and Fig. 6.

In Fig. 6, deviations between the model predictions and
the observed errors in terms of the 68% percentile are the
smallest for the CV model and increase with prediction time.

Possible reasons for these deviations are a violation of
the assumption of white, uncorrelated driver inputs which is
a strong simplification of reality. If acceleration commands
(not considered by the CV model) are applied, these will
certainly last for time spans up to multiple seconds. A
similar reasoning explains the overly represented peaks of
the acceleration models, where a driver keeps his inputs at
a constant value (i.e. correlated) for some time.

Despite the non-Gaussianity, a conclusion on the validity
of the estimated process noise parameters is sought. To this
end, a normal distribution is fitted to the error sample at each
time step. This is the best possible description of the errors
by a Gaussian distribution and thus a reference for the model
that is estimated from the training dataset.

2In fact, slightly different variances are predicted for each sequence,
depending on the initial Kalman filter estimate. Hence, the mean value is
taken for the evaluation.
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Overall, the reference fits are better adapted to the distri-
bution peaks. Fig. 6 shows that the 68% percentile values
are slightly overestimated as well, lying in between the data
and model prediction. This indicates that the method was
correctly applied and yields sensible estimates within the
limits of the underlying model assumptions.

VI. CONCLUSION

A method for estimating process noise parameters of
vehicle motion models from recorded trajectories has been
proposed, applied to three commonly used models and
evaluated. The results are Gaussian models which allow for
closed-form uncertainty prediction. Despite certain disadvan-
tages that come with this simple model structure, reasonable
predictions are achieved. With the analytical expressions
for uncertainty, algorithms for situation assessment can be
enhanced for more informed decision making.

The expectation maximisation algorithm that is used for
model identification has been thoroughly reviewed in terms
of theoretical aspects and its practical implementation. A
proposed novel contribution is a modified M-Step which
takes into account the special structure of the process noise
covariance in linear translational motion models.

For future works, enhancing the model structure to noise
processes with time correlation or non-Gaussian amplitudes
is an interesting objective. In order to maintain closed-form
solutions, one can attempt to explicitly model the time corre-
lation with an extended state vector for multiple time steps.
The correlation coefficients and process noise parameters of
the extended system model can then be estimated by the
EM-algorithm [31]. Another approach is to assume a non-
Gaussian distribution of the process noise amplitudes with
heavier tails, e.g. a bimodal Gaussian mixture.
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Fig. 4: Prediction errors in x for different prediction times tpred ∈ {1 s, 1.5 s, 2 s} compared to the prediction model
distributions and a-posteriori Gaussian fits. The non-Gaussianity of the error distribution becomes apparent in the non-linear
shape of the quantile-quantile plots. Still, the a-posteriori fits that are used to validate the model agree with the predicted
distribution in most cases. Hence, the derived model provides a reasonable prediction within the limits of a Gaussian model.
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Fig. 5: Prediction errors in vx for different prediction times tpred ∈ {1 s, 1.5 s, 2 s} compared to the prediction model
distributions and a-posteriori Gaussian fits.
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Fig. 6: 68% percentile values of observed errors, model predictions and a-posteriori normal fits. Increasing deviations are
observed at higher prediction horizon. For the CA model, the data shows an overly strong peak around the mean (as seen
in Fig. 4a) which is not captured and hence the predicted percentile values are too conservative. For velocity errors in the
CV model, a qualitative deviation from the theoretical evolution σ∆vx (tpred) ∝ √tpred can be observed.
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