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Abstract. In this work, a statistical analysis of object detection for
stereo vision based driver assistance systems is presented. Analytic mod-
elling has not been attempted previously due to the complexity of dense
disparity maps and state of the art algorithms. To approach this prob-
lem, a simplified algorithm for object detection in stereo images which
allows studying error propagation is considered. In order to model the
input densities, vehicle contours are approximated by Gaussian Mixture
Models and distance dependent measurement noise is taken into account.
Theoretical results are verified with Monte Carlo methods and real world
image sequences. Using the proposed model, a prediction on the uncer-
tainty in object location and optimal threshold selection can be obtained.

Keywords: driver assistance, stereo vision, object detection, statistical
modelling, error propagation

1 Introduction

To an increasing degree, surround environment perception is used in recent de-
velopments in the driver assistance domain. Currently, employing the stereo
vision principle to infer relevant information from the surroundings is an active
research topic [1, 2, 10].

This contribution considers statistical modelling of stereo vision based driver
assistance. The main motivation is to enhance system understanding for further
improvement and prediction of system performance. Experimental approaches
with ground truth information retrieved using additional sensors [11] or robotic
vehicles [12] are costly. Comprehensive simulation-based evaluation on the other
hand still poses unresolved challenges. Generating realistic synthetic stereo im-
ages is difficult due to the high complexity of relevant scenes and is approached
by augmentation of real images [9]. Furthermore, because of the complex na-
ture of dense disparity maps, state of the art algorithms in driver assistance
applications feature heuristic methods and dependencies. Hence, rigorous ana-
lytic treatment often becomes infeasible in closed form. Previously, this has been
considered only for a very simple scheme in the robotics domain [8].
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Fig. 1. Signal processing chain (top) and overview of modelling approach (bottom).

In this work, a simplified object detection algorithm for collision warning
in car following scenarios is assumed. The intention is to provide means for
statistical modelling of actual state of the art algorithms which can be derived
from the abstract approach. The proposed scheme is based on stereo imaging
and evaluates disparity measurements in central columns of the image. Similar
principles are used in common full-scale methods where column-wise aggregation
is performed not only in the central region but on the whole image [2, 10].

For this abstract detection algorithm, analytic error propagation to first order
is studied. The statistical modelling is based on a probabilistic description of
disparity measurement inputs. Compared to the challenge of modelling whole
images, the limited scope of a column-wise aggregation gives an easier path
towards finding input densities. These are composed of the depth profile of an
object and measurement noise. A Gaussian Mixture Model is proposed to model
an object’s contour. The number of measurements on a single object is modelled
depending on object height and distance to the camera. It is assumed that this
distribution is corrupted by additive correlated Gaussian noise [1] which gives
the final disparity measurement distribution.

Given this probabilistic model of disparity measurements, propagation to the
detection algorithm output is analysed. The predictions given by the model are
compared to empirical results from a set of real world image sequences.

First, a description of the exemplary system design is provided in Sect. 2.
Section 3 presents error propagation from disparity map to detection output.
Expected theoretical values are compared to empirical results in Sect. 4.

2 Background

Approaches to scene understanding from high resolution stereo images are typ-
ically split up into separate steps as depicted in Fig. 1 (top). In this work, the
sensor signal processing part is considered. It comprises image generation, global
image analysis and object detection. Subsequent steps include object tracking
over time, estimation of motion parameters and situation assessment.
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2.1 Stereo Image Measurements

Two cameras which form a rectified stereo system [2] with base-width bw and
focal length in pixel c are assumed for disparity generation. A 3-D point pw =
(xw, yw, zw)

>
is given in Cartesian world coordinates where the xw-axis is point-

ing in the driving direction. A Cartesian sensor coordinate system is aligned to
the image plane of the left camera with the optical axis as xc-axis. Transforma-
tion using the extrinsic camera parameters R, t is:

pc = Rpw − t . (1)

For simplified expressions it is assumed that camera mounting angles are usually
small and R ≈ I. Without loss of generality a setup with tx = ty = 0 is
considered. The origin of the Cartesian sensor coordinate system lies at pixel
location (u0, v0) in the image. A point pc is mapped to the image with a distance
dependent disparity value d yielding uvd-coordinates:uv

d

 =
c

xc

 yc

−zc
bw

+

u0v0
0

 . (2)

2.2 Object Detection Algorithm

In the domain of driver assistance, one crucial task is to detect vehicles or other
earthbound objects. Motivated by symmetry considerations, disparity images
are commonly aggregated column-wise, either globally in a vDisparity represen-
tation [7] or locally in stixels [2, 10]. Here, simplification is achieved by only
considering one central region of the image. It is assumed that within this nar-
row image region, relevant objects appear as similar to a vertical plane. Thus, a
correspondence measure between measurements and an idealised vertical plane
is calculated and used to indicate the presence of an object.

First, disparity measurements d̃ (u, v) are taken from ∆u central columns
u ∈ [u0 − 1/2∆u, u0 + 1/2∆u]. There are n∆v rows v ∈ [v, v +∆v]. Under the
assumption of spatial homogeneity of an object contour, disparity values are
condensed to their row-wise mean value to form mDisparity values d (v):

d (v) =
1

n∆u

u0+
1
2∆u∑

u=u0− 1
2∆u

d̃ (u, v) . (3)

For an exemplary scene, this is visualised in Fig. 2(a)-2(b).
Secondly, detection of objects from measurements d = {di}n∆vi=1 is performed

using a template matching approach in 3-D space [3]. A template is understood
as a parametrised representation of all possible measurement realisations. It is
assumed that relevant objects are ideally described as vertical planes fronto-
parallel to the camera with xw0 = const. This approximately maps to disparity
values d0 = const. [10] and the template is thus defined by a single parameter
d0.
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In order to decide whether a measurement comprises a relevant object and to
determine its position, a similarity measure to the template is calculated. Here,
this is evaluated using a Gaussian window on the distance (di − d0). Scaling the
distance with t1 (a system parameter) governs the tolerance to small deviations.
Assuming independent measurements, summation over all image rows generates
a correspondence measure g (d, d0) ∈ [0, n∆v] as shown in Fig. 2(c):

g (d, d0) =

n∆v∑
i=1

exp

(
−1

2

(di − d0)
2

t21

)
. (4)

Maximising (4) over the template parameter d0 gives the realisation with d̂obj
that corresponds best to the measurements:

d̂obj = arg max
d0

g (d, d0) . (5)

Distance estimates x̂wobj are calculated by transformation of d̂obj to Cartesian
coordinates according to (1)-(2). Relevant objects are differentiated from false

measurements or clutter by a detection threshold on gmax := g
(
d, d̂obj

)
.
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Fig. 2. Scene with a vehicle at xwobj = 12 m↔ dobj ≈ 12 pel. It can be recognised how
the vehicle’s rear is mapped to similar disparity values over multiple image rows v.
The value of g (d, d0) is calculated for two different values of the system parameter t1.
Increasing t1 yields higher maximum values and less sensitivity to an object’s contour
but reduced distinction between object and background.

3 Statistical Modelling

Based on the system description given in Sect. 2, a statistical analysis that is
structured according to Fig. 1 (bottom) is performed. First, an approach to
model relevant aspects of object appearance is proposed. The obtained input
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densities are then propagated to disparity space. In a third step, propagation
to expected value and standard deviation of the detection algorithm’s output is
calculated.

3.1 Modelling of Objects

The appearance of objects in the narrow region of interest that is considered
here depends on object dimensions and the depth profile along the vertical axis.

Coverage of Image Rows. The number of image rows n∆v,obj that an ob-
ject is mapped to depends on object height and distance to the camera. In the
following, a deterministic expression is derived from geometrical considerations.
Depending on environmental conditions and object’s texture, invalid disparity
measurement may occur in certain image regions. This can be modelled as a
stochastic influence which overlays the deterministic one that is considered here.

An object with height hobj at distance xwobj is vertically confined by its ground

contact position at pw−obj and upper edge at pw+
obj in Cartesian world coordinates.

Evaluating the transformation to image coordinates (1)-(2) then gives:

v+ = v0 −
czc−obj

xc−obj
v− = v0 −

czc+obj

xc+obj
. (6)

These theoretical values might exceed the image’s dimensions (v, v +∆v). This
has to be considered when calculating the difference n∆v,obj between upper and
lower image row. Neglecting this effect gives a simplified formula:

n∆v,obj = min
(
v +∆v, v+

)
−max

(
v, v−

)
≈ ckhobj

xwobj
. (7)

The exact and approximate solution in (7) are compared in Fig. 3 for three
typical values of hobj. Moreover, empirical values originating from a vehicle with
hobj = 1.4 m are displayed. For the simplified approximation, deviations can be
observed at small distances where upper and lower edges lie outside of the field
of view of the camera. Good correspondence is achieved for xwobj ≥ 6 m.

Modelling of Depth Profile. In order to model the distribution of relative
depth values ∆x which describe a contour, a finite mixture model is employed [4].
Here, a weighted sum of K Gaussians is chosen to allow closed-form expressions.
The probability density function is defined by the parameters µ∆x,σ∆x,ρ∆x:

p (∆x) =

K∑
k=1

ρ∆x,kN
(
µ∆x,k, σ

2
∆x,k

)
. (8)

To describe the profile of a real vehicle, the parameters of a Gaussian mixture
model (GMM) with K = 3 components are estimated from a sequence of mea-
surements xw taken in a stationary scene with xwobj = 6 m. The centred depth
measurements in Cartesian coordinates ∆x = xw−xwobj are used to estimate the
model parameters with the expectation maximisation principle [4] (Fig. 4 left).
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Fig. 3. Number of image rows an object with heigth hobj at distance xwobj is mapped
to. Exact solution (solid) and approximation (dashed) according to (7) compared to
empirical values obtained with hobj = 1.4 m.

3.2 Disparity Measurement Model

In order to model statistical properties on mDisparity level, the contour descrip-
tion (8) is propagated through a measurement model including noise.

Measurement Errors. Several models have been presented for measurement
errors in stereo vision. Error propagation through triangulation and quantisation
on individual image pixels is considered in [14]. Algorithms that achieve sub-pixel
accuracy lead to correlated errors over adjacent pixels. The overall disparity
errors are commonly approximated as zero mean Gaussians with variance σ2

disp

[1, 8] and correlation coefficient ρdisp between ncorr neighbouring pixels.
Taking the row-wise mean over n∆u disparity values according to (3) gives

for the standard deviation σnoise of measurement noise in mDisparity values:

σnoise =
σdisp
n∆u

√
n∆u + ρdispL (2n∆u − L− 1) (9)

where L = min (n∆u, ncorr). In the following, correlation is only considered in
the estimation of σnoise and neglected between mean values from different rows.

Propagation to mDisparity Space. It is assumed that the observed vehicle’s
depth profile ∆x is independent of distance. Minor perspective effects are hereby
neglected. Then, the GMM p (∆x) of an object at position xwobj is transformed
to a GMM p (d) in disparity domain. Expected values are transformed by the
nonlinear mappping (2) between 3-D positions and disparity:

µd =
cbw

xwobj + µ∆x
. (10)

Secondly, the variance is calculated by Gaussian error propagation. Measurement
noise as described by (9) is assumed independent of the object’s contour:

σ2
d =

(
cbw

xwobj
2

)2

σ2
∆x + σ2

noise . (11)



7

The weights ρd are left identical to ρ∆x [13].
A comparison of empirical measurements to an analytical GMM distribution

p (d) that is propagated according to (10)-(11) is shown in Fig. 4. Good corre-
spondence is achieved for situations with xwobj > 6 m where the vehicle is fully
visible in the image. In the first situation with xwobj = 3 m the vehicle is only
partly visible from the car boot upwards. That is why measurements of the road
in front of the vehicle (higher disparity values) are not present in the histogram.
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Fig. 4. Approximation of depth profile ∆x from measurements at xwobj = 6 m (green,
left) and propagation to disparity space according to (10)-(11) (red). Empirical mea-
surements taken at the respective distance are shown for comparison (histograms).

3.3 Detection Algorithm

In the previous section, the input distribution of disparity on objects has been
modelled. Now, propagation to the detection algorithm (5) will be analysed.

Expected Values. Given n∆v,obj values with a GMM density p (d), the ex-
pected value of the correspondence measure gmax is to be estimated. As correla-
tion between mDisparity values of different rows is neglected, these are treated
separately with E [g (d, d0)] = n∆v,objE [g (d, d0)]. One obtains:

E [g (d, d0)] = n∆v,obj

∞∫
−∞

exp

(
−1

2

(d− d0)
2

t21

)
p (d) dd

= n∆v,obj

K∑
k=1

ρd,kt1√
t21 + σ2

d,k

· exp

(
−1

2

(µd,k − d0)
2

t21 + σ2
d,k

)
. (12)

In order to calculate the expected value of gmax, the order of expectation and
maximisation operators is changed:

E [gmax] ≈ max
d0

(E [g (d, d0)]) . (13)
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Because an analytic solution to (13) does not exist in all cases for K ≥ 2, the
exponential in (12) is approximated by a first order series expansion:

E [g (d, d0)] ≈ n∆v,obj
K∑
k=1

ρd,kt1√
t21 + σ2

d,k

·

(
1− 1

2

(µd,k − d0)
2

t21 + σ2
d,k

)
. (14)

Taking the derivative yields a unique maximum at:

E
[
d̂obj

]
≈

 K∑
k=1

ρd,kµd,k(
t21 + σ2

d,k

) 3
2

 ·
 K∑
k=1

ρd,k(
t21 + σ2

d,k

) 3
2


−1

. (15)

Finally, the expected value of the correspondence measure gmax is calculated

from (12) evaluated at E
[
d̂obj

]
from (15).

Variance in Object Distance. One is naturally interested in the uncertainty
of the distance estimates x̂wobj that are calculated from the disparity d̂obj. For
the considered detection algorithm this value is an implicit function φ (d) :=
arg max g (d, d0) of the measurements d. A linear approximation of the variance
is obtained for i = 1 . . . n∆v measurements distributed independently with di ∼
N
(
µd,i, σ

2
d,i

)
. Then, Gaussian error propagation gives:

Var
(
d̂obj

)
≈
n∆v∑
i=1

σ2
d,i

(
∂φ (d)

∂di

∣∣∣∣
µd,i

)2

. (16)

As there is no explicit expression for φ (d), the implicit function theorem is used
to calculate the partial derivatives [5]:

∂φ (d)

∂di
=
∂d̂obj
∂di

= −
(
∂2g (d, d0)

∂2d0

)−1(
∂2g (d, d0)

∂di∂d0

)
. (17)

Calculating these derivatives for g (d, d0) from (4) one obtains for (16):

Var
(
d̂obj

)
=

∑n∆v
i=1 σ

2
d,i

[
exp

(
− 1

2

(µd,i−d̂obj)
2

t21

)(
1− (µd,i−d̂obj)

2

t21

)]2
[∑n∆v

i=1 exp

(
− 1

2

(µd,i−d̂obj)
2

t21

)(
1− (µd,i−d̂obj)

2

t21

)]2 . (18)

One difficulty is that evaluating this expression requires the distribution param-
eters µd,i, σd,i for all image rows. A lower bound is obtained using the Cauchy-
Schwarz inequality and assuming that the variance on objects is σd,i = σd:

Var
(
d̂obj

)
≥ σ2

d

n∆v,obj
. (19)

This concurs with the intuition that aggregating over image rows reduces the
variance similar to averaging over n∆v,obj measurements. Finally, the variance

in distance x̂wobj is obtained from the variance in d̂obj by linearisation of (2).
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Monte Carlo Experiment. In a Monte Carlo simulation with N = 1.000
iterations, vehicle contour samples of n∆v,obj = 50 values are drawn from a
GMM distribution p (∆x). Each sample is mapped to disparity space for varying
distances xwobj according to (1)-(2) and correlated Gaussian measurement noise is
added. In every simulation run, the detection algorithm output (5) is calculated.

First, mean values of d̂obj and gmax are compared to the expected values
(15) and (13) as visualised in Fig. 5(a). The closed-form expressions give a good
estimate of the simulation results. As has been shown in Fig. 4, the disparity
distribution narrows for higher distances. That is why gmax approaches n∆v,obj
as it is expected for the ideal case d0 = const.

Secondly, the standard deviation in x̂wobj is calculated and shown in Fig. 5(b).
In this second Monte Carlo simulation, only the realisations of the measurement
noise are sampled whereas the vehicle contour distribution is drawn once. It
is argued that while the contour can be conveniently modelled as a random
variable ∆x, it will typically not vary over time for the same object. Therefore,
the analytic lower bound (19) is calculated with σd = σnoise from (9). Due to the
inversely proportional relationship (2) the uncertainty increases with distance.
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Fig. 5. Monte Carlo simulation results and analytic expressions.

4 Application and Experimental Results

Two possible applications of the theoretical modelling will be explored in the
following: First, expected correspondence measure and standard deviation in
position estimates of a vehicle are derived for different sensor noise levels. These
are compared to empirical results from a set of real world image sequences.
Secondly, the correspondence measure is predicted for different classes of objects.
This allows to choose appropriate detection threshold values in order to separate
unwanted detections from true objects.
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4.1 Vehicle Detection

A stereo video sensor records sequences of a standing vehicle at positions xwobj ∈
{3 m, 6 m, . . . , 30 m} as illustrated in Fig. 2(a). In order to emulate different sen-
sor configurations or environmental conditions, additional correlated Gaussian
noise with σd,add ∈ {0.25 pel, 0.50 pel} is added to the disparity images. Each
sequence comprises approximately 230 frames. The detection algorithm from
Sect. 2.2 with t1 = 0.5 is applied to these measurements.

Analytic predictions on the detection algorithm results are determined as
follows: Given the probabilistic description of the vehicle’s contour from Sect. 3.1,
the expectation of the correspondence measure gmax is calculated from (12)-(15).
The uncertainty in distance estimates is evaluated from the lower bound (19).

Fig. 6(a) shows that standard deviation in x̂wobj increases with distance and
stereo image noise. In Fig. 6(b) the expected value of gmax is compared to the
measurements. Good correspondence to the empirical results can be observed.

Overall, the number of image rows covered by an object’s appearance de-
creases with distance which concurs with lower values of the correspondence
measure (4). It should be noted however, that the reduction in n∆v,obj as seen in
Fig. 3 is much steeper than that of the corresponding values of gmax, especially
for distances xwobj ≤ 12 m. This effect has already been noted in the simulation
results in Fig. 5(a) and is explained by the object’s contour which causes a higher
variation in disparity at small distances.

One limitation is that the vehicle’s contour depth density has been derived for
a vehicle which is fully visible in the image and thus does not perfectly represent
the case of a partly visible vehicle at xwobj = 3 m. As has been seen in Fig. 4 the
depth distribution is then assumed too wide and therefore the predicted value
of gmax becomes too small.
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Fig. 6. Comparison of measurements from real stereo images (solid) and theoretical
predictions (dashed). Variation of gmax within a sequence of measurements is illustrated
by the ±1σ error bars.
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4.2 Threshold Selection

For the application of collision avoidance in vehicle following scenarios, collision
relevant obstacles have to be separated from unwanted detections. One question
is thus how the threshold on the continuous similarity measure has to be chosen.

Here, the proposed model is used to predict the correspondence measure for
three exemplary objects: A vehicle, a ramp with slope of 8% as found in parking
decks and a curb stone with height 20 cm. The depth profiles are modelled in form
of a GMM for the vehicle’s rear, a uniform distribution for the ramp and constant
distance for the curb stone. Note that many depth profiles can be approximated
by a GMM which allows to apply the derived analytical expressions. Results
shown in Fig. 7 indicate that a detection threshold t2 = 25 on gmax yields
successful separation of a relevant vehicle from the two non-relevant cases.

5 Conclusion

This contribution has addressed the increasing need for model based perfor-
mance evaluation in the domain of driver assistance systems. An object detection
algorithm for dense stereo images as starting point for study of analytic error
propagation has been proposed. Closed-form propagation of Gaussian input den-
sities has been performed with first-order approximations. Standard deviation
of position estimates has been obtained with Monte Carlo methods and an an-
alytic lower bound has been derived. Future works will focus on more efficient
calculation of propagation, e.g. the unscented transformation.

Having analytic expressions for the algorithm’s performance also facilitates
to draw conclusions in the inverse direction. Given a specification of detection
threshold, sensor and system parameters one is able to formally characterise the
detected physical objects in terms of height, distance and depth distribution.

One insight is that inspection of subsequent processing steps can be used
to reduce the dimensionality of modelled input densities. In the exemplary sys-
tem design, disparity measurements are aggregated row-independently in central
image columns. Therefore, instead of describing high-dimensional stereo images,
only a one-dimensional density is needed. A Gaussian Mixture Model is proposed
to model the depth profiles of relevant objects. Exemplary results demonstrate
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the approximation of a vehicle’s rear and how the distribution is propagated to
disparity space.

Propagation of uncertainty in object measurements to object tracking and
situation assessment is a further relevant topic. The effect of sensor errors on col-
lision warning algorithms has been analysed in [6,15] for idealised noise processes
and can be extended to the measurement error model from this work.
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