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Abstract—Testing of advanced driver assistance systems de-
mands a highly accurate representation of the vehicle’s envi-
ronment, e.g. obtained by laser scanner sensors. In contrast to
typical on-line assistance functions, the purpose of generating
reference data allows full batch processing of the raw sensor
measurements. Therefore, object tracking algorithms can make
use of both past and future measurement information. Hence,
ambiguities during object detection and data association may be
resolved in a principled manner.

Although many works consider the tracking of vehicles using
LIDAR1 sensors, the specifics of batch processing have not
been investigated yet. This paper proposes novel non-causal
approaches to detecting and tracking vehicles in 2-D scan point
clouds given by an automotive LIDAR sensor. Evaluations based
on experimental data show how post processing can improve the
trade-off between the suppression of clutter measurements and
prompt detection as well as the estimation accuracy.

I. INTRODUCTION

Intelligent vehicles, i.e. characterised by advanced driver
assistance functions with environment perception, constitute
an important field of applied sensor data fusion. To objectively
test a perception system, ground truth information is required,
as discussed in our previous work [1]. The same holds for the
data-driven generation of simulation scenarios, e.g. in order
to evaluate algorithms for behaviour planning of automated
vehicles [2], [3]. Due to a fairly high spatial and temporal
resolution, LIDAR sensors are frequently used to obtain such
reference data [4], [5].

Laser scanner sensors obtain a sparse depth image of the
environment. Each depth value corresponds to one reflection
(scan point) of a laser beam. In this work, 2-D LIDAR sensors
with a narrow vertical opening angle are considered. They
perceive a planar depth image of the environment as shown
in Fig. 1. However, scan points lack spatial and temporal
associations as well as motion information. Therefore, the
goal is to cluster reflections belonging to individual objects,
to associate the measurements over time and to estimate
unobservable motion states. This yields object tracks with
motion information.

In principle, reference data may be obtained using real-time
capable algorithms, which have been developed in order to
realise driver assistance functions, see e.g. [6]–[8]. However,
in contrast to this purpose, reference data can be generated

1Light Detection and Ranging.
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Fig. 1: Exemplary LIDAR measurements from an urban road
with three lanes. The image shows how the scan point mea-
surements evolve over a period of 1 s, from light to dark
colour. Reflections of the laser rays at the rear or front of
other vehicles manifest as lines or characteristic L-shapes.

batch-wise which removes several crucial restrictions of on-
line processing. Thus, this work investigates the benefits of
post processing of LIDAR data where both past and future
measurements are available. More specifically, two aspects
will be addressed with the following contributions:

• Initialising new object tracks requires a trade-off be-
tween suppression of clutter measurements and prompt
recognition of relevant objects. In an off-line processing
approach, this compromise can be improved by back-
ward propagation of information. Therefore, a forward-
backward object tracking algorithm (Sec. III-C–III-E) is
developed. The method uses a LIDAR-specific quality
metric (Sec. III-B) in order to find accurate initial values
which minimise the risk of an early track loss.

• Real-time constraints and computational limitations, e.g.
on embedded devices, complicate the handling of raw
scan point measurements. Instead, derived representa-
tions, e.g. parametric contour models, are often used. We
will employ a model-free alternative method for associ-
ating scan points to object tracks based on a consistent
motion criterion (Sec. III-D). This criterion minimises the
dependence of the tracking algorithm on correct a-priori
clustering of scan points.

The advantages of the proposed methods over a baseline, on-
line capable algorithm are evaluated with experimental data in



terms of state estimation accuracy and track length (Sec. IV).
The organisation of the remainder of this paper is as

follows: Background information and related works are first
introduced in Sec. II. Subsequently, the developed approaches
to off-line processing are detailed in Sec. III. Evaluation results
follow in Sec. IV. A summary and discussion of possible
further extensions in Sec. V concludes this paper.

II. BACKGROUND ON LASER SCANNER SIGNAL
PROCESSING AND RELATED WORK

The objective of LIDAR signal processing is to obtain a
compact and information rich environment representation from
raw scan point clouds. In an automotive context, the position
and motion of other road users, e.g. vehicles, are of high
relevance and will be in the focus of this work. This is usually
achieved by three algorithmic steps as visualised in Fig. 2:

1) Extended objects are usually represented by multiple
scan points, especially at short distances. Thus, scan
points which belong to the same object must be grouped
into segments. This segmentation is often based on the
local neighbourhood of scan points that is measured with
distance measures [6], [7].

2) A track is established from measurements of the same
object from multiple time steps. Various methods exist
for associating the measurements over time, depending
on the targeted objects, their environment, and the sen-
sor’s measurement principle [7], [9], [11]. The decision
to initialise a new track with scan points that cannot
be assigned to one of the previously observed tracks is
based on relevance criteria. Measurements of a vehicle
may be distinguished from clutter if they show a distinct
shape [6] or a consistent motion [8].

3) In order to estimate the motion state of a track, a
single reference point is calculated from the associated
scan points, e.g. a point cloud’s centroid [6]. More
sophisticated approaches avoid pseudo motions of this
reference point caused by a non-stationary point cloud,
e.g. due to dynamic occlusions [12]. Given the temporal
sequence of reference point measurements, a state esti-
mator, e.g. an Extended Kalman filter (EKF)2 [11], can
be employed to infer unobservable motion state variables
of a dynamic motion model [13], such as velocities and
accelerations.

We remark that a successful track extension depends on the
accuracy of the motion state estimate. That is because the
predicted locations of a track’s current scan points are usually
used as a search region for associating scan points from a new
time step.

For real-time applications, the above steps can only make
use of past LIDAR scans. Post processing of an entire se-
quence of scans on the other hand offers additional flexibility
which will be leveraged in the following. To the best of the au-
thors’ knowledge, no detailed evaluations of such approaches

2Instead of an EKF, other implementations of a Bayes filter for non-linear
system models, e.g. the Unscented Kalman filter, may be used. Investigating
the differences between such methods [10] lies out of this work’s scope.
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Fig. 2: In on-line applications, measurements are processed
strictly sequentially over time: After segmenting the laser
scan points, object tracks are extended, terminated or newly
initialised.

have yet been published apart from a sketch of the idea given
in [2]. Nevertheless, sound theoretical foundations of recon-
structing dynamic object tracks from collected measurement
data have been developed both for estimating the state of a
single target [14] and multiple target tracking [15].

III. APPROACHES TO OFF-LINE SIGNAL PROCESSING

The steps of our approach are explained in roughly the
same order in which they are applied to the observations
of a single object, see Fig. 3. We start with a high level
description of the proposed algorithm in Sec. III-A. Then, in
Sec. III-B we explain how we rate segments of scan points for
their observability. Subsequently, the initialisation of a track
is detailed in Sec. III-C. We provide further details on how
tracks are extended to new time steps in Sec. III-D, as well as
on how their start and end are determined. Finally, we describe
our approach to state estimation in Sec. III-E.

A. Overview

On-line tacking algorithms try to detect objects as early as
possible, but detection always involves selecting a threshold
that determines the trade-off between early detection and
few false positives. In off-line tracking, this dilemma can be
relaxed: Detection merely needs to ensure that every object is
detected in at least one time step.

First, the goal is to initialise a track for an object at a time
when this object is easy to observe, thus making the initial
state estimates more reliable. To this end, we introduce a
quality index for segments (Sec. III-B) which is independently
calculated for all segments from every time step. We refer to
the set of segments and corresponding quality indices as the
register. Note that initially, the register contains more than
one segment corresponding to the same object, if it has been
observed in multiple time steps. These redundant entries will
be removed when their constituent scan points are associated
to a track.
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Fig. 3: A key principle of the proposed off-line approach is
to defer the decision for a track initialisation until sufficient
evidence is available. To this end, a quality rating for scan
point segments is introduced. A track is initialised for the
best-rated segments and subsequently extended in forward and
backward direction. State estimates are obtained by a forward
filtering pass and additional backward smoothing.

We now initialise a track starting with the segment that
features the highest overall quality index, see Sec. III-C for
details. Next, we extend the active track to a new time step
by associating new scan points and updating the motion state
estimate. The association of scan points is solved using the
Weighted Iterative Closest Point (WICP) algorithm as detailed
in Sec. III-D. Iteratively, the current track is extended into the
past and the future as seen from the initial time step, until a
stopping criterion is met. Upon completion, the active track is
stored and its corresponding scan points as well as segments
are precluded from the generation of further tracks. Given
all scan points associated to this track, the object’s motion
state is finally estimated by an Extended Rauch-Tung-Striebel
smoother (EKS) algorithm, see Sec. III-E.

We repeat the above steps, each time taking the remaining
segment with the highest quality measure from the updated
register, until no entry remains. Therefore, we repeatedly
perform single object tracking both forward and backward in
time, each time taking the object that is best visible.

B. Segment rating

The quality index determines the order of track initialisation
attempts. Conceptually, this measure rates how reliably an
object can be observed at a certain time. It is calculated for a
segment of scan points M as follows:

J (M) := w1 Jcardinality (M) + w2 Jshape (M) . (1)

(a) I-shape (b) L-shape (c) U-shape

Fig. 4: Relevant objects, i.e. vehicles, are approximately
cuboidal. Depending on the pose relative to the sensor, this
leads to typical point configurations in the 2-D laser scans. The
goodness of fit is included in the quality rating of segments
from Sec. III-B.

The weights w1 and w2 are design parameters. The first term,
Jcardinality (M), is a sigmoid function of the number |M| of
scan points in segment M

Jcardinality (M) =
1

1 + exp (−α (|M| −Nref))
, (2)

where α and Nref are design parameters. We include this term
to reward segments with a high number of scan points which
correlates with low distance, large size, and good reflectivity
for laser beams.

The second term Jshape is based on a shape recognition
approach for vehicles from LIDAR sensors, as proposed in [6],
see also [16] for a recent analytical approach. In this approach,
the segment to be analysed is compared to L-, I-, and U-shapes
as illustrated in Fig. 4. By applying a threshold to the residual
distance between scan points and the fitted model shape, we
determine the number of scan points Ninlier (M) that support
the model, i.e. the inliers. Thus, we can measure the quality
of the current segment in terms of model fit as

Jshape (M) =
Ninlier (M)

|M|
. (3)

C. Track initialisation

By allowing free choice of when to initialise a track, this
point in time can be chosen in such a way, that estimating the
state becomes more reliable, thus decreasing the likelihood of
incorrect data association. Therefore, track initialisation starts
with the segment which currently has the highest quality index.
Assuming that this segment corresponds to a real object, this
segment is guaranteed to be the best observation of the object,
with regard to the quality index.

An initial motion state estimate, which is needed for further
track extensions and state estimation, is then generated. We are
particularly interested in an initial velocity estimate since scan
point measurements do not carry motion information. To this
end, we consider all segments from the time steps immediately
next to the detection time t0, i.e. t−1 and t1. This situation is
illustrated in Fig. 5. Following a Multi-Hypothesis Tracking
scheme, we generate several motion state hypotheses based on
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Fig. 5: Illustration of the situation at track initialisation: Three
time steps t−1, t0, t1 are considered, but there may be more
than one segment in a time step, e.g. due to clutter as at t1.

a Constant Velocity (CV) model, given by the following set
of velocity estimates:{

∆ci,k : ‖∆c (Mi,Mj) ‖ < θd, ‖∆c (Mj ,Mk) ‖ < θd,

‖∆c (Mj ,Mk)−∆c (Mi,Mj) ‖ < θ∆v,

D (Mi,Mj) < θD, D (Mj ,Mk) < θD

}
(4)

with ∆c (Mi,Mj) := c (Mi)− c (Mj) ,

i ∈ It−1 , k ∈ It1 .

Here, c (M) is the centroid of the scan points in segmentM,
j is the index of the segment chosen for track initialisation and
It−1

and It1 denote the sets of the indices of all segments from
the time steps {t−1, t1}. The Procrustes distance D (Mi,Mj)
between segment Mi and segment Mj is a measure for the
dissimilarity of the two point clouds [17]. The generation
of motion state hypotheses is governed by the threshold
parameters θ(·) .

For each motion state hypothesis, we perform the tracking
procedure (Sec. III-D, Sec. III-E) independently of the other
hypotheses. When completed, only the longest track and its
scan point associations are kept.

D. Track extension and termination

In this section we describe how we associate scan points
from a new time step with the active track. The new scan
points provide a measurement of the object’s position and will
be used to update the estimates of the object’s kinematic state.

The most recent point cloud is first predicted to the next time
step based on the motion model and the latest state estimate.
To reduce the number of scan points from the new time step
that are to be considered in the following, a gating criterion
on the distance to the predicted scan points is applied.

Then, the WICP algorithm is used to align the predicted
point cloud with scan points within the gate. This yields
the associations of each observed scan point to a point from
the prediction. However, the WICP algorithm associates only
scan points which are close to the points from the object’s
predicted point cloud. To allow the object’s appearance to
grow by previously occluded edges, we perform an additional
clustering step, using the already associated scan points as
seeds. A reference point which is used to update the state
estimate in the EKF is then calculated from the combined set
of associated and additionally clustered scan points.

We want to repeat track extensions only for as long as
the object is visible. Hence, we need to detect an object’s
disappearance which is checked using three criteria. First, we
compute the Procrustes distance [17] between the predicted
and observed point cloud and compare it with a fixed thresh-
old. As a second criterion, we check the consistency of the
estimated motion, by calculating from our state estimate the
likelihood of observing the resulting motion, given all previous
motion states. Third, we compare the number of associated
scan points to a minimum threshold. A track is discontinued
if the termination criteria above are fulfilled for at least Kterm

adjacent time steps.

E. Joint state estimation of forward and backward pass

As has been mentioned in the previous section, the extension
of a track to a new time step relies on an estimate of the current
motion state. We will discuss our approach to motion state
estimation in the following, taking into account that tracks are
simultaneously extended both forward and backward in time.

We employ the non-linear Constant Turn Rate and Accelera-
tion (CTRA) kinematic motion model which features the state
x :=

[
x y v θ a ω

]>
where v is the target’s velocity,

θ the heading angle, a acceleration and ω the yaw rate. The
motion dynamics are defined by the following differential
equation [13]:

ẋ (t)
ẏ (t)
v̇ (t)

θ̇ (t)
ȧ (t)
ω̇ (t)

 =


v (t) cos (θ (t))
v (t) sin (θ (t))

a (t)
ω (t)

0
0

+


0
0
0
0

wa (t)
wω (t)

 . (5)

Here, wa and wω denote Gaussian white noise processes
with time-invariant power spectral densities Sa and Sω , re-
spectively. Note that the system model equations in discrete
time differ between forward and backward direction. They are
derived from (5) by integration [18].

According to Sec. III-C, a track is initialised at a time t0
with a tentative state expectation x−0 and covariance P−0 . Each
successful track extension to a time tk yields a measurement
yk that relates to xk through a (non-) linear measurement
model yk = h (xk,vk) where vk is assumed as Gaussian
noise vk ∼ N

(
0,R

)
.

Therefore, the goal is to infer an estimate of the state
distribution p

(
x
)

at t1, . . . , tk and t0, t−1, . . . , t−l from
the measurements y0:k := y0,y1, . . . ,yk and y0:−l :=
y0,y−1, . . . ,y−l in forward and backward direction, respec-
tively. We assume a Gaussian distribution xk ∼ N

(
x̂k,Σk

)
of

the state although the scheme can be easily adapted to general
distributions.

The simplest solution is to decompose the task into separate
state estimation problems for the forward and backward direc-
tion and solve it using two independent estimators. However,
this way we would ignore all observations from one pass when
estimating the motion states of the other. Yet, especially in the
first few steps of the tracking process, we want to minimise
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uncertainty and thus make efficient use of all available mea-
surement information.

Therefore, an approach has been developed that iteratively
performs forward and backward track extension, as is illus-
trated in Fig. 6. State estimates at the track’s boundaries are
obtained from the full measurement information from both
directions. The approach relies on a repetition of four steps,
employing Bayesian filtering and smoothing [14] in alternate
order:

1) Starting in the forward direction, an EKF yields an
estimate p

(
xk|y0:k

)
for k > 0.

2) A first smoothing pass is implemented with an EKS
which yields the refined estimates p

(
x0, . . . ,xk|y0:k

)
.

Observe that the estimate at t0 now incorporates all
future measurement information, thus replacing the ten-
tative value x−0 . This refinement of the initial state
reduces the linearisation errors in the EKF equations that
would otherwise hinder a successful track extension in
the opposite direction.

3) An estimate p
(
x−l|y0:−l

)
is obtained for l > 0 by

applying an EKF to the backward state transition model
as derived from (5). The initial state distribution p

(
x0

)
follows from the second step.

4) Finally, a second smoothing pass yields
p
(
x−l, . . . ,x0|y0:−l

)
.

The approach is similar to the globally iterated linear filter-
smoother [19], a variant of the EKF which also performs back-
ward propagation of state estimates. By updating the estimate
of x0 and repeating the linearisation with this more accurate
estimate, it reduces errors from linearisation of significant
system non-linearities.

At the start of this iterative scheme, we repeatedly update
all available estimates, once a new measurement becomes
available. Nevertheless, we do not expect further improve-
ments of the initial state estimate after a few iterations. In
order to minimise the computational effort, the extension of a
track is thereafter performed independently in the forward and
backward direction. These extension passes are continued until
the track termination criterion is fulfilled in both directions.

Once the boundaries of the track are known, the final motion
state estimate is obtained by a Kalman filtering and smoothing
pass over all time steps in the forward direction. We remark
that estimating the initial state from measurements and filtering
these measurements again may lead to overconfident estimates.
Thus, we initialise the state covariance with large values and
rely on the mean state estimate primarily as a good initial
guess to minimise linearisation errors.

IV. EVALUATION RESULTS

The experimental evaluation should reveal whether the
proposed off-line processing scheme can improve the track
quality. One aspect of track quality is the accuracy of the state
estimates, which is assessed in Sec. IV-A. A second measure
of track quality, analysed in Sec. IV-B, is the average track
length [13].

tfirst t−2 t−1 t0 t1 t2 tlast

1
2
3
4
5
6
7
8

TimeSteps

Track extensions Filtering Smoothing

Fig. 6: Sequence of track extensions and state estimation
updates: The first track extension steps (1–4) are performed
in alternating direction. After this start-up phase, extension
steps are performed individually in the forward and backward
direction (5–6), until the track termination criterion is met.
Lastly, the state is estimated by a final filtering and smoothing
operation over the entire track (7–8).

In order to evaluate the advantages gained by off-line
processing, an on-line capable algorithm according to Fig. 2 is
used as a baseline. This implementation performs track exten-
sions solely in the forward direction. Moreover, state estimates
are obtained by an EKF whereas the off-line algorithm uses
an additional smoothing pass. However, all remaining parts
and criteria of the two implementations, e.g. the criteria for
initialising and terminating a track, are the same. The rationale
is that the evaluation should focus on the methodological
differences between on-line and off-line processing.

A. State estimation accuracy

In order to quantitatively assess the accuracy of the motion
state estimates, ground truth values are needed. Following
the approach presented in [20], two experimental vehicles
shown in Fig. 7 are equipped with a highly accurate self-
localisation system based on differential GPS coupled with
inertial measurement units3. The ego-vehicle, carrying a 2-D
laser scanner with four beams4, remains stationary at the origin
of a ground-fixed Cartesian coordinate system. Ground truth
values for the target vehicle’s trajectory can be calculated from
the global poses and compared to the estimates.

An accelerated approach and left turn across manoeuvre in
front of the ego-vehicle is conducted on a closed test track.
Thus, notable accelerations as well as rotations are included.
This trajectory and the motion state are shown in Fig. 8. It can
be seen that the accuracy of the state estimates is improved
significantly by post processing, especially at the beginning of
the track.

In order to quantitatively assess this difference, the experi-
ment is repeated ten times. The sample mean µ∆(·) and sample
standard deviation s∆(·) are calculated for the errors ∆ (·) in

3Automotive Dynamic Motion Analyzer (ADMA) by GENESYS ELEK-
TRONIK GMBH.

4ibeo LUX 2010 by IBEO AUTOMOTIVE SYSTEMS GMBH.
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TABLE I: Error statistics for ten turn across manoeuvres. With forward tracking and causal state estimation (top row), shorter
tracks and higher standard deviations are obtained. The proposed algorithm with backward tracking and smoothing consistently
achieves the highest accuracy. The additional smoothing step reduces the standard deviation by 15 % to 58 % compared to the
filtered estimates (middle row).

v [m/s] a
[
m/s2

]
ω [rad/s]

Approach No. of Cycles µ∆v s∆v µ∆a s∆a µ∆ω s∆ω

Baseline 523 −0.557 1.310 −0.038 1.21 0.050 0.128

New (filtered) 1212 −0.227 0.849 −0.003 0.767 0.021 0.095

New (smoothed) 1212 −0.312 0.723 −0.185 0.601 0.003 0.040

TABLE II: Statistics on tracks found in laser scanner recordings with a duration of 30 min per street type. On motorways,
fewer and longer tracks are initiated due to the separation of the two traffic directions. Overall, the median track lengths can
be increased by the backward tracking approach.

Urban Rural Motorways

Number of all tracks Baseline 2086 2375 1273
New 2505 2727 1597

Number of tracks confirmed as ve-
hicles

Baseline 319 222 150
New 403 271 182

Number of common tracks
Baseline 286 178 129
New 308 182 127

Median length of common tracks Baseline 2.4 s 2.0 s 6.4 s
New 3.1 s (+31.1%) 2.5 s (25.0%) 7.8 s (+20.5%)

Laser scanner

GPS antenna Inertial
measurement
unit

Fig. 7: Experimental vehicles for evaluating the state estima-
tion accuracy. The laser scanner sensor is mounted at the front
of the first vehicle. Both vehicles carry self-localisation units
based on differential GPS and inertial measurements.

velocity v, acceleration a and yaw rate ω over all cycles. As
an additional figure for comparison, the filtered state estimates
of the new algorithm prior to the smoothing pass are included
in the comparison. The results in Tab. I reveal that smoothing
alone reduces the standard deviation of the estimates by 15 %
to 58 %.

B. Track length

The purpose of the second experiment is to evaluate how
much information is extracted from the raw LIDAR measure-
ments in real traffic scenes. To this end, we analysed the
number of generated tracks and their lengths. When comparing
two algorithms on the same dataset, these figures indicate if
tracks are initialised with a delay or terminated prematurely
[21]. This is evaluated using recordings from three categories

of street types – urban and rural roads as well as motorways
– with a duration of 30 min each.

In order to reduce the effect of clutter on these figures, we
restrict the evaluation to relevant objects. Here, the focus is
on road users, e.g. cars or trucks, excluding static objects.
Making this distinction can be achieved by a number of
heuristics or machine learning techniques. Since the details
of such approaches are not in the scope of this work, object
classification is taken from a built-in routine of the employed
LIDAR sensor. Only tracks which have been classified as
vehicles are included in the evaluation. Moreover, the median
track lengths are only compared for objects which are present
in the results of both the baseline and the proposed algorithm.
Note that multiple short tracks from one algorithm may be
associated to one long track from the other algorithm.

Tab. II shows the statistics of the tracks per dataset. On
average, 20 % to 31 % longer tracks are achieved by backwards
track extension. The longest tracks are achieved on motorways
where the road layout causes fewer occlusions than on narrow
and curvy streets.

V. CONCLUSION

This work has proposed novel post processing methods for
estimating vehicle motion tracks from laser scanner measure-
ments. Despite the maturity and sophisticatedness of LIDAR
data processing techniques for on-line driver assistance func-
tions, it has not been investigated in depth so far, how off-line
processing can enhance the estimation accuracy.

It is the authors’ belief that having accurate reference
measurements will play an important role in the development
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Fig. 8: The target vehicle approaches the ego-vehicle in a left turn across manoeuvre. The ego-vehicle remains stationary at the
origin in a. Here, the laser scanner measurements (blue) and trajectory estimates (red, green) are visualised (for visual clarity,
only every 10th cycle is shown). Ground truth positions are illustrated in black. Estimates of velocity, acceleration and yaw
rate are shown in b with their estimated covariance as indicated by the shaded ±1σ intervals. Observe that even the smoothed
estimates become inconsistent during the vehicle’s turning phase. This can be attributed to pseudo motion that is induced by
a shift of the point cloud centroid.

of highly automated vehicles, e.g. by enabling data-driven sim-
ulation environments. As has been shown in this work, already
a few principled post processing techniques can increase the
accuracy remarkably, which will benefit said applications.

It is beyond the scope of this work to contribute to more
but a few elementary parts of laser scanner signal process-
ing. The following aspects could provide opportunities for
further fruitful research. First, this work employed an EKS
under a Gaussian noise assumption for state estimation. When
extended to more general noise models, i.e. including outliers,
the estimator’s robustness could be improved [22]. Second,
one could retrieve further information from the raw scan point
clouds and integrate them into the state estimator. One possi-
bility are the translation and rotation estimates given by the
WICP algorithm [7]. Lastly, the inference of semantic object
class labels would certainly benefit from post processing. This
task is in general challenging since scan points are often
sparse but could be remedied by backward propagation of
information.
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[12] S. Pietzsch, “Modellgestützte Sensordatenfusion von Laserscanner und
Radar zur Erfassung komplexer Fahrzeugumgebungen,” Dissertation,
Technische Universität München, München, 2015.

[13] R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation
of advanced motion models for vehicle tracking,” in Information Fusion
(FUSION), 11th International Conference on, 2008, pp. 1–6.
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