
MODEL-BASED TRACTION CONTROL 
FOR ELECTRIC VEHICLES

Optimal design and operating strategies for electric vehicles are investigatet 
at the Karlsruhe Institute of Technology (KIT). This contribution details the 
design of a model-based traction control for an electrically powered vehicle.
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1 MOTIVATION

In order to increase vehicle safety, anti-slip control helps to avoid 
critical states in the tire-road contact. Critical situations occur if 
the maximum force which can be transmitted to the road is 
exceeded. This happens especially easily in wet or snowy road 
conditions. Consequences are blocked or slipping tires which 
severely affects the steerability of the vehicle. Therefore, it is 
important to monitor tire slip and control the driving torque 
accordingly.

Research on methods for traction control of electric vehicles is 
a current topic in science and industry. New concepts utilise the 
fast and precise controllability of the electric engine torque when 
compared to a combustion engine. This enables model-based 
approaches, where the relation between tire force and slip (mu-
slip-curve) is continuously estimated [1, 2]. Controlling the tire 
slip to the optimum value is achieved using sliding mode control 
[3], adaptive control [4], model-predictive control [5] or fuzzy-
control [6].

This contribution details the design of a model-based traction 
controller for an electric vehicle. Engine torque is generated by an 
asynchronous motor on the front axle. The tire slip setpoint value 
is derived from an estimate of the mu-slip-curve and chosen to 
maximise tire forces. Here, a novel linear parameterisation of the 
model is used which allows a more robust and precise estimation 
in comparison to previous approaches. Controlling the non-linear 
tire slip dynamics is performed with a sliding mode controller 
enhanced by conditional integration.

2 CONTROL SYSTEM ARCHITECTURE

The control system design based on works [7, 8] is shown in ❶. 
There are separate modules for the estimation of the vehicle state 
variables, the estimation of the tire-road-friction characteristic and 
the actual tire slip controller.

Tire forces in longitudinal (Fx) and vertical (Fz) direction as well 
as driving speed vx are derived from measurements of the wheel 
speeds ω and the vehicle accelerations ax and ay. The tire slip 
describes the wheel’s movement relative to the vehicle speed. In 
the case of acceleration, it is defined as the normalised difference 
according to eq. (1) [9].

EQ. 1 λ =   
ωr – νx

 ______ ωr  

In order to derive the reference value λ0, the normalised longitu-
dinal tire force µ according to eq. (2) is calculated first.

EQ. 2 µ =   
Fx

 __ Fz
  

Conditions of tire (pressure, age) and road define a non-linear rela-
tion µ(λ) between tire-slip and transmittable force. Here, a para-
metric model is assumed for the quasistatic case and the model 
parameters are estimated. This gives the controller setpoint value 
λ0 which allows for maximum normalised force transmission µmax.

Under consideration of the engine torque Mdrv that is requested 
by the driver, the tire slip is controlled to the setpoint value. The 
control output Mmot is then requested from the powertrain.

3 ESTIMATION OF VEHICLE STATES AND TIRE FORCES

On-line estimates of tire forces and tire slip are obtained from 
wheel speed and vehicle acceleration measurements [7, 10]. 
Assuming pure longitudinal dynamics, the system model accord-
ing to eq. (3) is considered here. The dynamics of the tire forces 
depend on unknown external factors and are thus modelled with 
a Gaussian w as a random walk process.
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EQ. 3

   Jrω· i = –rFx,i + Mii ∈ {FL, FR}{ mν·x = Fx,VL + Fx,VR –   1 __ 2   cw Aρν 2
x

   F
·

x,i = wi ∈ {FL, FR}

Estimation of vehicle speed νx (for calculating the tire slip accord-
ing to eq. (1)) and longitudinal tire forces Fx,i on the front axle is 
performed using an extended Kalman filter. The measurement 
equation (4) is given by the speeds of the free-rolling wheels on 
the rear axle.

EQ. 4 νx =   1 __ 2   r (ωRL + ωRR)

The vertical tire forces Fz,i are determined by the vehicle’s geom-
etry with a simplified model of pitch and roll dynamics given in 
eq. (5) [7].

EQ. 5

Fz,i =   1 __ 2     
lSH

 __ l   mg –  (   1 __ 2   ax ±   
lSH

 __ b   ay –+   
hs

 __ bg
   axay )  

  
hs

 __ l   mi ∈ {FL, FR}

4 ESTIMATION OF MU-SLIP-CURVE

4.1 QUASISTATIC MODEL OF TIRE FORCE 
TRANSMISSION
A crucial part of the system under control is given by the relation 
of force transmission and slip at the tires. In order to incorporate 
the varying conditions of road and tire, a parameterised model for 
the quasistatic case is employed.

One commonly used approach is the Burckhardt friction model 
[9] which describes the stationary normalised tire force as a func-
tion of tire slip according to eq. (6).

EQ. 6 µ(λ) = c1 (1 – exp (– c2 λ)) – c3 λ

Four exemplary curves resulting from typical parameterisations are 
shown in ❷. These are characterised by a maximum tire force 
transmission at (λmax, µmax) for low slip values.

4.2 MODEL APPROXIMATION
The Burckhardt friction model from eq. (6) is non-linear with 
respect to the parameter c2. For parameter estimation methods or 
usage in adaptive controllers, it is however advantageous to have 
a linear relation between function values and model parameters 
as in eq. (7).

EQ. 7

µ(λ) = [ψ1(λ) … ψN(λ)] · θ
                           { 
                   ψT(λ)

Approximating the Burckhardt friction model by a linear com-
bination of basis functions according to eq. (8) is presented in 
[1, 2].

EQ. 8 µ̂(λ) = ∑n
i=1 θi exp (–wiλ) + θn+1 – θn+2λ

The parameters wi that determine the n basis functions are derived 
by minimisation of the squared approximation error. Better approx-
imation is obtained for higher n, however this also increases the 
dimension of the parameter vector θ which is eventually to be esti-
mated on-line. Thus, a more accurate approximation is achieved 
at the cost of reduced estimator convergence speed. As a sensible 
compromise, [2] proposes to utilise n = 3 basis functions and 
therefore N = 5 model parameters in total.

Here, a novel set of basis functions according to eq. (9) is 
employed [12]. The optimal function parameters are determined 
by numerical solving of the non-linear optimisation problem. For 
the resulting approximation with n = 3 basis functions an improve-
ment of 50 % in the squared error is obtained compared to the 
previous solution from eq. (8). The optimal linear parameterisation 
is found as w = [8,105  27,547  75,012].

EQ. 9 µ̂(λ) = ∑n
i=1 θi [1 – exp (–wiλ)] – θn+1λ

Apart from a reduction in the number of model parameters to N 
= 4 in this more accurate approximation, another advantage is that 
all friction curves include the origin as the Burckhardt friction 
model (6) does. This is not guaranteed in the approximation 
according to eq. (8). It is thus required to additionally incorporate 
this condition in the parameter estimation method [2]. Otherwise, 
convergence against implausible solutions may occur which is 
inherently prevented with the new scheme.

4.3 ON-LINE PARAMETER ESTIMATION
Given the time-discrete input values (λk, µk) that have been 
obtained as outlined in section 3, the model parameters of the 
linear parameterisation from eq. (9) have to be estimated using a 
recursive least-squares (RLS) estimator.
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❷ Tire-force tire-slip curves according to the Burckhardt tire friction model with 
typical parameter values [7]
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The parameter estimate θ̂k and the estimation error covariance 
Pk are updated in each time step k according to eq. (10) using a 
gain vector γk [13]. The impact of past measurements on the cur-
rent estimate is continuously reduced by exponential weighting 
which is determined by a forgetting factor α (0 < α ≤ 1).

EQ. 10    θ̂k = θ̂k–1 + γk · [µk – ΨT (λk) θ̂k–1]{ Pk =   1 __ α   [Pk–1 – γk ΨT (λk) Pk–1]

One commonly used approach is to calculate the gain γk on the 
basis of a user-defined constant forgetting factor. However, this 
causes problems in the application of tire road friction estimation. 
On the one hand, transition between different road surfaces is 
usually immediate and thus a fast adaptation of the estimator is 
desirable. Therefore, the estimator should have a short internal 
time horizon, that is a small value for α. On the other hand, the 
estimate should remain stable during periods of low excitation 
which is achieved with α close to 1.

In order to cope with these requirements, a variable forgetting 
factor αk is employed here. Calculation of αk and the correspond-
ing gain vector γk is given by eq. (11) [14].

EQ. 11

   γk = Pk–1 Ψ  (λk) · [1 + ΨT (λk) Pk–1 Ψ  (λk)]–1 

{ αk = max  ( αmin, 1 – ∑–1
0 [1 – ΨT (λk) γk]  

   [µk – ΨT (λk) θk–1]2 ) 

❸ visualises results of an exemplary mu-slip-curve estimation. The 
vehicle accelerates from standstill on a road surface with friction 
coefficient µmax = 0,6. After a few seconds, a different road type 
with µmax = 0,3 is reached. In the case of a variable forgetting fac-
tor, adaptation to the new conditions is accomplished by a decrease 
in α. Most of the time however, the estimator’s forgetting of infor-

mation is halted with α = 1. In contrast, employing a constant α 
= 0,99 causes an increase in estimator uncertainty and thus 
potential instability for lack of excitation.

 
5 CONTROLLER DESIGN

The previously described model identification of the mu-slip-curve 
is used to calculate the controller reference slip value λ0. Under 
the assumption of pure longitudinal dynamics, the point of maxi-
mum tire force transmission at λmax is chosen. Note that this is not 
necessarily an optimal choice in the case of both lateral and lon-
gitudinal dynamics. Here, the maximum longitudinal tire force is 
achieved for higher slip values. However, lateral force transmission 
decreases monotonously with tire slip which is undesired [9]. To 
cope with this dependency, one could choose the reference value 
λ0 as a function of the side slip angle [15].

5.1 DYNAMIC MODEL
The controller calculates separate input torques Mset,i, i ∈ {FL, FR} 
for both tires. As only one central engine is assumed here, the 
motor torque Mmot is set in correspondence to the lower of both 
values. In situations with different road friction between both 
sides, the maximum force transmission is thus not reached. How-
ever, this select-low principle avoids the occurrence of undesired 
yaw moments which would have to be counteracted otherwise. 
Above all, the torque value Mdrv that corresponds to the current 
throttle position limits the controller requested value.

The dynamic model of the system under control is derived from 
eq. (12) for both vehicle sides.

EQ. 12    Jrω· = –rFx – rfrFz + Mset{
 m0,5ν·x = Fx –   1 __ 2   cwA0,5ρν2

x
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Here, the quantities per wheel are denoted as vehicle mass m0,5 
and cross-sectional area A0,5. Under the assumption of νx as a 
slowly time-varying parameter (compared to the tire dynamics), 
the differential equation (13) gives the dynamics of the tire slip 
λ [16].

EQ. 13

λ· = –γ (λ) [Ψ (λ) – Mset] 

with γ  (λ) =   
r (1 – λ)2

 _______ Jrνx
   

Ψ (λ) =  (   Jr
 _____ m0,5r2     

1
 ____ 1 – λ   + 1 )  µ (λ) Fzr  

 
–   

 Jr
 _____ m0,5r2     

1
 ____ 1 – λ     1 __ 2   cwA0,5ρν2

x + rfrFz

In practice, Ψ (λ) is determined by time varying or uncertain param-
eters. For the approximation Ψ̂ (λ) that is implemented in the con-
trol law, an error bound ρ (λ) according to eq. (14) is calculated.

EQ. 14 |Ψ (λ) – Ψ̂ (λ)| ≤ ρ (λ)

5.2 CONTROL LAW
A non-linear sliding mode controller (SMC) is employed here 
because it allows simple implementation and guaranteed stability 
under uncertain parameters.

The main principle is to define a stable trajectory (sliding sur-
face) in state space that converges towards the reference value λ0. 
In order to achieve convergence from arbitrary initial values, a 
switching control law is designed [17]. An idealised control law is 
derived with the simple sliding surface s(λ) = λ – λ0 and control 
gain K according to eq. (15).

EQ. 15

Mset = Ψ̂ (λ) –  (   K
 ____ γ (λ)   + ρ (λ) )  sgn (s(λ)) 

with sgn(x) =  –1, x < 0
                      {  1, x ≤ 0

One major disadvantage of this approach is that perfect equality 
λ – λ0 cannot be reached in practice. This causes a permanent 
switching of the discontinuous part of the control variable (chat-
tering) [17] which is not allowed for mechanical actuators. In order 
to avoid this undesired effect, several modifications have been 
proposed.

A linear function can be used to replace the idealised step func-
tion with a continuous approximation for a small tolerance band 
∈. However, this does not guarantee convergence of the controller 
within the tolerance band [17]. A more sophisticated approach 
that is employed here is to additionally enhance the sliding surface 
with a proportional-integral term. This extension termed Condi-
tional Integration (SMC+CI) achieves convergence within the ∈ 
environment [3].

6 SIMULATION

The described control system is implemented into the simulation 
model of an electric vehicle in IPG carmaker. The vehicle features 
a central motor for propulsion of the front wheels. A comparison 
is made between the vehicle dynamics with and without control.

First, acceleration from standstill to vx = 80 km/h under wet 
road conditions (µmax = 0,7) is considered. Results of this manoeu-
vre are shown in ❹. The effectiveness of the controller can be seen 
from the reduced tire slip values. Integrating the electric engine 
power over the whole sequence gives that for an identical final 
velocity, a reduction in energy consumption of 3,3 % is achieved.

A second simulation compares the vehicle dynamics when 
accelerating out of a steady state circular test. The vehicle enters 
a circle with constant radius R = 100 m, µmax = 0,3 at a velocity 
of vx = 40 km/h. The time series shown in ❺ indicate that steady 
state conditions with constant lateral acceleration, yaw rate and 
steering wheel angle are reached at t = 15 s. At t = 20 s the 
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maximum throttle is quickly applied. In the uncontrolled case, 
tire slip occurs and thus lateral tire forces drop. This results in 
a loss of steerability such that the vehicle does not follow the 
desired circular trajectory. It can be clearly seen that anti-slip 
control allows keeping the vehicle on track with only slightly 
increased steering effort.

7 CONCLUSION AND OUTLOOK

In this contribution, a model-based tire slip control based on an 
on-line estimation of the road friction coefficient has been devel-
oped. A novel linear parameterisation of the Burckhardt friction 
model was employed which yields improvements in accuracy, 
robustness and convergence speed of the parameter estimator. 
Controller design for the non-linear tire slip dynamic was studied 
using sliding-mode-control. Enhanced with a conditionally acti-
vated integral controller, the chattering effect is compensated for 
while exact convergence is maintained. Evaluation of the vehicle 
dynamics is performed in a realistic simulation environment and 
compared to the uncontrolled case. Reduced energy consumption 
during acceleration and improved lateral tire force transmission 
during cornering are found.

Future works could enhance the method by explicitly consider-
ing force transmission both in longitudinal and lateral direction. 
This is an especially relevant topic for vehicle concepts with indi-
vidual electric engines for each wheel where the increased degrees 
of freedom could be used to optimise vehicle stability in critical 
situations.
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SYMBOLS UNIT DESCRIPTION

A m2 Cross-sectional area (frontal)
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